The reaction p p → Λ Σ 0 together with its charge conjugate channel (c.c.) has been measured at LEAR. The incident p momentum was 1.695 GeV/ c , corresponding to an excess energy above threshold of 14.8 MeV. Results are given for the production cross section and the differential cross section as well as for the polarization. Comparisons are made with theoretical calculations and with the reaction p p → Λ Λ .
No description provided.
No description provided.
No description provided.
First data are presented for the polarized-target asymmetry in the reaction π+p→π+pγ at an incident pion energy of 298 MeV. The geometry was chosen to maximize the sensitivity to the radiation of the magnetic dipole moment μΔ of the Δ++(1232 MeV). A fit of the asymmetry in the cross section d5σ/dΩπ dΩγ dk as a function of the photon energy k to predictions from a recent isobar-model calculation with μΔ as the only free parameter yields μΔ=1.64(±0.19expΔ,±0.14 theor)μp. Though this value agrees with bag-model corrections to the SU(6) prediction μΔ=2μp, further clarifications on the model dependence of the result are needed, in particular since the isobar model fails to describe both the cross section and the asymmetry at the highest photon energies.
No description provided.
No description provided.
The analyzing power of π−p→π0n has been measured for pπ=301−625 MeV/c with a transversely polarized target, mainly in the backward hemisphere. The final-state neutron and a γ from the π0 were detected in coincidence with two counter arrays. Our results are compared with predictions of recent πN partial-wave analyses by the groups of Karlsruhe-Helsinki, Carnegie-Mellon University-Lawrence Berkeley Laboratory (CMU-LBL), and Virginia Polytechnic Institute (VPI). At the lower incident energies little difference is seen among the three analyses, and there is excellent agreement with our data. At 547 MeV/c and above, our data strongly favor the VPI phases, and disagree with Karlsruhe-Helsinki and CMU-LBL analyses, which are the source of the πN resonance parameters given in the Particle Data Group table.
Axis error includes +- 5/5 contribution (Uncertainty in background normalisation).
Axis error includes +- 5/5 contribution (Uncertainty in background normalisation).
Axis error includes +- 5/5 contribution (Uncertainty in background normalisation).
A proton-proton bremsstrahlung experiment has been carried out at TRIUMF using a 280-MeV polarized proton beam impinging on a liquid-hydrogen target. All three outgoing particles were detected: the higher-energy proton in a magnetic spectrometer, the lower-energy proton with plastic scintillators, and the photon in lead-glass Cherenkov detectors. The experiment shows the first unambiguous evidence for off-shell effects in the free nucleon-nucleon interaction, in that the analyzing powers disagree strongly with the predictions of the soft-photon approximation (which incorporates only on-shell information) but are consistent with the results of calculations using the Bonn and Paris potentials.
Estimated scale uncertainty is 1.5 pct.
Estimated scale uncertainty is 1.5 pct.
Estimated scale uncertainty is 1.5 pct.
We have measured the analyzing power in π+, π−, and KS0 production by a polarized proton beam at 13.3 and 18.5 GeV/c. The data cover the central and the beam fragmentation region, in the transverse-momentum range up to 2 GeV/c. The results indicate that sizable effects are present at high xF and also persist into the hard-scattering region for KS0 and π+. A zero value of the analyzing power was observed for π− production.
No description provided.
No description provided.
No description provided.
A single-spin asymmetry in the inclusive π 0 production at small x F was measured. In the experiment 40 GeV/c π − mesons were incident on transversely polarized protons and deutrons. An asymmetry of (40–50)% has been revealed in the hard scattering region.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
Proton momentum in deuteron rest frame (ANTILAB).
Data are presented for the left-right asymmetry in inclusive production of π+, π−, and p with proton beams (polarized normal to the scattering plane) of 13.3 and 18.5 GeV/c incident on a LH2 target. At both energies the asymmetry in π+ production grows steadily to about 25% near the kinematic limit, whereas the π− and p asymmetries are consistent with zero over the measured range of pt, 1.1–2.2 GeV/c.
No description provided.
No description provided.
No description provided.
The analyzing power (spin-dependent azimuthal asymmetry) has been observed for the first time in the nuclear Coulomb coherent production process, the ‘‘Primakoff process,’’ with the use of the newly constructed 185-GeV/c Fermilab polarized proton beam. We have observed a large asymmetry of this process in the regions of ‖t’‖<0.001 (GeV/c)2 and 1.36
No description provided.
No description provided.