The polarized target asymmetry parameter has been measured for single π o photoproduction from hydrogen at 4 GeV and values of four-momentum transfer squared between −0.15 (GeV/ c ) 2 and −1.8 (GeV/ c ) 2 .
Axis error includes +- 0.0/0.0 contribution (?////).
None
No description provided.
We report measured asymmetries as a function of polar scattering angle for the reactions p¯p→π−π+ and p¯p→p¯p, using a polarized proton target. The annihilation data, obtained at a p¯ momentum of 1.64 GeV/c, are the first asymmetry data to be collected for this channel. A fit of these data and published differential cross section data is made by a partial-wave expansion, and the results are compared with a previous analysis. The elastic scattering data, obtained at 1.64 and 2.55 GeV/c, are fitted with an eight-parameter strong-absorption model.
No description provided.
p−d elastic cross-section and polarization measurements are presented at an incident energy of 198 MeV, over the center-of-mass angular range 80° to 170°. The peak in the backward or pickup region is examined in terms of a simple nucleon-exchange parametrization.
No description provided.
We have measured the cross sections at 90° c.m. for π± and π0 photoproduction with polarized photons. The photon energies ranged from 0.8 to 2.2 GeV. We compare the resonant "bumps" in the cross section with theoretical models. The measured asymmetry agrees with a quark-model calculation though the predicted cross sections are low.
No description provided.
No description provided.
No description provided.
The differential cross section and polarization in p−d elastic scattering have been measured at an incident laboratory momentum of 0.99 GeVc (kinetic energy 425 MeV) over most of the angular range. Elastic p−d scattering events from a CD2 target were selected by angular correlation, coplanarity, and time of flight. A significant feature of the results is the large positive polarization at backward scattering angles.
No description provided.
Measurements of the differential cross section for the reactions π+p→K+Σ+ and π+p→K+Y*+(1385) are reported at 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0, 6.0, 10.0, and 14.0 GeV/c. Polarization in π+p→K+Σ+ is also reported at 6.0, 10.0, and 14.0 GeV/c. At small |t|, the cross section for π+p→K+Σ+ is well described by an exponential Aebt with slopes in the range b≈8−10 (GeV/c)−2; for |t|>0.5 (GeV/c)2 this slope decreases considerably. The cross section for π+p→K+Y*+(1385) is well described for |t|>0.2 (GeV/c)2 by a single exponential of slope about half that for π+p→K+Σ+; there is no break near |t|>0.5 (GeV/c)2. We observe a dip in this cross section near t=0. The polarization in π+p→K+Σ+ is consistent with zero for |t|<0.4 (GeV/c)2 and becomes large and positive for larger |t|.
No description provided.
No description provided.
No description provided.
None
No description provided.
Photoproduction is studied at 2.8 and 4.7 GeV using a linearly polarized monoenergetic photon beam in a hydrogen bubble chamber. We discuss the experimental procedure, the determination of channel cross sections, and the analysis of the channel γp→pπ+π−. A model-independent analysis of the ρ0-decay angular distribution allows us to measure nine independent density-matrix elements. From these we find that the reaction γp→pρ0 proceeds almost completely through natural parity exchange for squared momentum transfers |t|<1 GeV2 and that the ρ production mechanism is consistent with s-channel c.m. helicity conservation for |t|<0.4 GeV2. A cross section for the production of π+π− pairs in the s-channel c.m. helicity-conserving p-wave state is determined. The ρ mass shape is studied as a function of momentum transfer and is found to be inconsistent with a t-independent Ross-Stodolsky factor. Using a t-dependent parametrization of the ρ0 mass shape we derive a phenomenological ρ0 cross section. We compare our phenomenological ρ0 cross section with other experiments and find good agreement for 0.05<|t|<1 GeV2. We discuss the discrepancies in the various determinations of the forward differential cross section. We study models for ρ0 photoproduction and find that the Söding model best describes the data. Using the Söding model we determine a ρ0 cross section. We determine cross sections and nine density-matrix elements for γp→Δ++π−. The parity asymmetry for Δ++ production is incompatible with simple one-pion exchange. We compare Δ++ production with models.
FROM QUOTED TOPOLOGICAL CROSS SECTIONS. 1.44 GEV CROSS SECTION PUBLISHED PREVIOUSLY.
No description provided.
NO TMIN CORRECTION HAS BEEN MADE.
We have completed measurements of the differential cross section for γ+p→π0+p, and the asymmetry with polarized photons, for incident photon energies from 4 to 18 GeV and momentum transfers between t=−0.1 and −1.4 (GeV/c)2. The experiment was performed at the Stanford Linear Accelerator Center, using the SLAC 1.6-GeV/c spectrometer to analyze protons recoiling from a hydrogen target. For the cross-section measurements a normal collimated bremsstrahlung beam was used. For the asymmetry measurements the polarized photons were produced by coherent bremsstrahlung from a diamond crystal, and a coincidence was required between the recoil proton and one of the π0 decay photons in a shower counter.
No description provided.
No description provided.
No description provided.