New pp measurements of Delta sigma L and Delta sigma T between 200 and 520 MeV disagree with earlier Argonne data, and resolve discrepancies with inelastic data, phase-shift analysis and forward dispersion relations.
TOTAL CROSS SECTION DIFFERENCE FOR PURE TRANSVERSE SPIN STATES (ANTIPARALLEL MINUS PARALLEL).
TOTAL CROSS SECTION DIFFERENCE FOR PURE LONGITUDINAL SPIN STATES (ANTIPARALLEL MINUS PARALLEL).
None
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
We have made, for the first time, a direct reconstruction of the pp elastic-scattering matrix at 579 MeV from a series of experiments performed at the Schweizerisches Institut für Nuklearforschung polarized-beam line. Fifteen observables consisting of the polarization, two-spin correlation and transfer parameters, and three-spin parameters were measured at seven angles between 66° and 90° (c. m.). The experimental results and reconstructed amplitudes are presented and compared to phase shift analysis.
No description provided.
VALUES OF PRECESSION ANGLE O. OBSERVABLES ARE RELATED BY THE FORMULA, (OABC) = (S'ABC)*COS(O) + (K'ABC)*SIN(O).
The first measurements are reported of the asymmetry in resonance-region scattering of longitudinally polarized electrons by longitudinally polarized protons. Data have been obtained at Q2=0.5 and 1.5 (GeV/c)2 in the missing-mass range W=1.1−1.9 GeV. Results are compatible with a multipole analysis of single-pion electroproduction. The spin-dependent behavior is consistent with a duality mechanism as in the unpolarized case.
ELECTRON ASYMMETRY AT Q**2 ABOUT 0.5 GEV**2.
ELECTRON ASYMMETRY AT Q**2 ABOUT 1.5 GEV**2.
PHOTON ASYMMETRY AT Q**2 ABOUT 0.5 GEV**2.
We have measured the asymmetry parameter A and the spin correlation parameter A nn in pp elastic scattering, using the Argonne ZGS polarized proton beam and a polarized proton target. Angular distributions of A and A nn for | t | ≳ 0.2 (GeV/ c ) 2 were obtained at eight momenta between 1.10 and 2 if 2.75 GeV/ c . We find significant structure in both the energy and t -dependence of A nn at these energies. At p lab ≈ 1.34 GeV/ c A nn reaches a very large value of about 0.8–0.9 near θ cm = 90°.
No description provided.
No description provided.
No description provided.
The energy dependence of the spin-parallel and spin-antiparallel cross sections for p↑+p↑→p+p at 90°c.m. was measured for beam momenta between 6 and 12.75 GeV/c. The ratio (dσdt)parallel:(dσdt)antiparallel at 90° is about 1.2 up to 8 GeV/c and then increases rapidly to a value of almost 4 near 11 GeV/c. Our data indicate that this ratio may depend only on the variable P⊥2, and suggests that the ratio may reach a limiting value of about 4 for large P⊥2.
.
.
.
Measurements have been made of the polarisation parameters G and H for the process γ p→ π + n in the photon energy range 600–1875 MeV and pion c.m. angles between 30° and 100°. These data were obtained in a double polarisation experiment, in which the polarised photon beam from the Daresbury electron synchrotron was incident upon a polarised proton target. Theoretical predictions from a current analysis are compared with the data.
No description provided.
No description provided.
No description provided.
None
DATA AVERAGED FOR TWO DIRECTIONS OF TARGET POLARIZATION.
No description provided.
No description provided.
Measurement of secondary-proton polarization from the reaction γ p → π 0 p have been performed in the proton energy range 500–800 MeV at c.m. pion emission angles 100°, 120°, 140°. The experiment was carried out using an optical spark chamber telescope at the output of the magnetic spectrometer. The obtained experimental data are included in a Walker-type analysis in order to verify the parameters of the resonances P 11 (1470), D 13 (1570) and S 11 (1535). Proton polarization in the reaction γ p → π 0 p was measured for a photon energy of 450 MeV at a c.m. pion emission angle of 105° using photons linearly polarized at 45° to the reaction plane. A liquid hydrogen target in the field of a superconducting magnet was used for the separation of the P x ′ and P z ′ components of the secondary-proton polarization vector.
No description provided.
No description provided.
No description provided.