Cross sections, differential cross sections, single and joint spin-density matrix elements are given for the reactions π+p→(ρ0, ω)Δ++ at 10.3 GeV/c. Correlations between the vector-meson and the Δ++ decay angular distributions are observed. A discussion of the results in terms of particle exchange, SU(3) symmetry, quark additivity, and the equal-phase hypothesis is presented. The amplitudes for the process π+p→ρ0Δ++ are extracted by a model-dependent analysis and compared with current theoretical predictions.
P-WAVE BREIT-WIGNER RESONANCES PLUS BACKGROUND USED WITH SLICE TECHNIQUE.
FROM RESONANCE OVERLAP REGION WITH BACKGROUND SUBTRACTED AND NORMALIZED TO TOTAL CROSS SECTION.
FROM RESONANCE OVERLAP REGION WITH BACKGROUND SUBTRACTED AND NORMALIZED TO TOTAL CROSS SECTION.
We present data on the five final states Λω, Λφ, Λϱ 0 , Σ 0 ⊘ and Σ 0 ϱ 0 produced in 3.1–3.6 GeV/ c K − p interactions. These data are from a bubble chamber experiment with 18 events/μb. For all reactions the data consist of the overall and differetial cross sections, and the hyperon polarisation and the vector meson's density matrix elements as a function of momentum transfer. For Λω and Λ⊘, an almost complete amplitude analysis is performed in several regions of momentum transfer. The data are examined from the point of view of various exchange models.
CORRECTED FOR UNSEEN DECAY MODES OF LAMBDA, OMEGA AND PHI.
No description provided.
NO BACKWARD PHI PRODUCTION.
The reaction π + p→ ωΔ ++ (1236) is studied at 16 GeV/ c . Cross section, differential cross section, single and joint spin-density matrix elements are given and the correlations between the ε and Δ ++ (1236) decay angular distributions are investigated. Natural and unnatural spin-parity exchanges contribute to this reaction in roughly equal amounts. Natural exchanges lead predominantly to Δ ++ (1236) with helicity ± 3 2 , while unnatural exchanges lead predominantly to Δ ++ (1236) with helicity ± 1 2 and to ε with helicity zero. Furthermore, unnatural exchanges are small at t ′≅0.2 GeV 2 compared to other t ′ values, which may be due to the nonsense wrong-signature-zero of the B-meson exchange. Quark model relations are found to be satisfied by the data.
CORRECTED FOR UNSEEN OMEGA DECAY MODES. 'SLICE METHOD' USED TO HANDLE RESONANCE TAILS AND BACKGROUND.
FROM EVENTS WITHIN MASS-CUTS FOR RESONANCES AND NORMALIZED TO TOTAL CROSS SECTION.
'ALL'.
The reaction π + p → ϱ 0 Δ ++ (1236) at 16 GeV/ c has been studied. Cross section, differential cross section, single and joint spin-density matrix elements are given. Correlations between the ϱ 0 and Δ ++ (1236) decay distributions are observed. Unnatural spin-parity exchanges, mainly observed at small t ' values, dominate the ϱ 0 Δ ++ (1236) production. The natural exchange contributions are only (7 ± 2)% and become as important as the unnatural exchanges beyond t ' = 0.3 GeV 2 . Contributions to Δ ++ (1236) helicity 3 2 states do not exceed 20% of the total ϱ 0 Δ ++ (1236) cross section and are mainly due to unnatural exchanges.
'SLICE METHOD' USED TO HANDLE RESONANCE TAILS AND BACKGROUND.
FROM EVENTS WITHIN MASS-CUTS FOR RESONANCES AND NORMALIZED TO TOTAL CROSS SECTION.
'B'.
Results are presented for the quasi two-body hypercharge exchange reactions of the type using data from a high statistics bubble chamber experiment. Total and differential cross sections and the momentum transfer dependence of the meson and hyperon resonance single density matrix elements are discussed. Amplitude analyses are performed for the first two reactions. The results are compared with quark model and duality predictions and with those from other related reactions.
No description provided.
No description provided.
No description provided.
The pπ+π0 and pπ+π+π− final states from π+p interactions at 3.9 GeV/c have been analyzed by the prism-plot technique and the following three quasi-two-body channels have been studied in detail: π+p→ρ+p, π+p→π0Δ++, and π+p→ρ0Δ++. Results are presented on cross sections, differential cross sections, and single and joint spin density matrix elements. These are compared with the Dar-Watts-Weisskopf absorption model and Reggeized pion-exchange model predictions. Relations among joint spin density matrix elements for ρ0Δ++ are compared with quark-model predictions.
No description provided.
No description provided.
Cross sections of the reaction K − p → π + π − π 0 Λ are determined in a bubble chamber study at 10 incoming beam momenta between 1.425 GeV/ c and 1.800 GeV/ c . For the subsample K − p → ωΛ , cross sections and angular distributions are presented together with their Legendre polynomial expansions and those of the single and joint density matrix elements. An energy dependent partial-wave analysis is performed including earlier data. The data is well fitted by constant background amplitudes in the outgoing S, P and D waves plus two I = 0 resonances in this region, the well established G 7 Λ(2100) and the P 3 Λ(1870).
No description provided.
No description provided.
LEGENDRE POLYNOMIAL EXPANSION COEFFICIENTS OF D(SIG)/DOMEGA.
The joint decay density-matrix elements have been measured for the ρ0Δ++ and ωΔ++ channels at 3.7 GeV/c. The data are presented as a function of momentum transfer in both the t-channel and s-channel coordinate systems. The presence of correlated decays is illustrated for both reactions by employing selective cuts on the decay angles of one resonance, and displaying the effects on the decay distribution of the opposing resonance. An amplitude analysis is performed with the data near 0° production angle, where we obtain a helicity decomposition of the scattering amplitude with no experimental ambiguity.
T-CHANNEL COORDINATE SYSTEM (XYZ=TH).
T-CHANNEL COORDINATE SYSTEM (XYZ=TH).
S-CHANNEL COORDINATE SYSTEM (XYZ=SH).
The non-strange four-prong events of π + p interactions at 3.5 GeV/ c are studied. Cross sections are calculated for all resonance productions in the channels π + p → p π + π + π − ( σ T = 3.18 ± 0.13 mb) and π + p → p π + π + π − π o ( σ T = 4.03 ± 0.16 mb). The dominant two body reactions Δ ++ ϱ o and Δ ++ ω o are investigated in detail, and production and decay distributions are presented as well as joint decay density matrix elements and joint correlation terms. The Δ ++ ϱ o reaction is compared to predictions of OPE with absorption and the Δ ++ ω o is compared to rho-exchange with sharp cutoff.
FOUR-PRONG, NON-STRANGE CROSS SECTIONS. SYSTEMATIC ERROR INCLUDED.
BREIT-WIGNER RESONANCE FITS, ALLOWING FOR PHASE SPACE AND RELEVANT REFLECTIONS, TO <P PI+ PI+ PI-> FINAL STATE.
BREIT-WIGNER RESONANCE FITS, ALLOWING FOR PHASE SPACE AND RELEVANT REFLECTIONS, TO <P PI+ PI+ PI- PI0> FINAL STATE.
Decay correlation data for π − p → K ∗ Λ at 3.9 GeV /c are analyzed to determine the amplitude structure. We emphasize combinations of observables invariant under rotations between s and t channel frames.
No description provided.