The first direct measurement of electron-neutrino quasielastic and quasielastic-like scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in electron production angle, electron energy and $Q^{2}$ are presented. The ratio of the quasielastic, flux-integrated differential cross section in $Q^{2}$ for $\nu_{e}$ with that of similarly-selected $\nu_{\mu}$-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current $\nu_{e}$ interactions used by long-baseline neutrino oscillation experiments. The data are found to be consistent with lepton universality and are well-described by the predictions of the neutrino event generator GENIE.
The $\nu_{e}+\bar{\nu}_{e}$ flux as a function of neutrino energy from the beam simulation for the data used in this analysis. The $\bar{\nu}_{e}$ fraction is shown separately to emphasize the dominance of $\nu_{e}$ in the sum.
Flux-integrated differential $\nu_{e}$ CCQE-like cross section versus electron energy.
Covariance matrix for flux-integrated differential $\nu_{e}$ CCQE-like cross section versus electron energy.
The total cross sections for the elastic electroproduction of $\rh0$ and $J/\Psi$ mesons for $Q~2$ $>$ 8 GeV$~2$ and $\langle W \rangle \simeq 90$ GeV/c$~2$ are measured at HERA with the H1 detector. The measurements are for an integrated electron$-$proton luminosity of $\simeq$3pb$~{-1}$. The dependences of the total virtual photon$-$proton ($\gamma~* p$) cross sections on $Q~2$, $W$ and the momentum transfer squared to the proton ($t$), and, for the $\rho$, the dependence on the polar decay angle ($\cos \theta~*$), are presented. The $J/\Psi$ : $\rh0$ cross section ratio is determined. The results are discussed in the light of theoretical models and of the interplay of hard and soft physics processes.
Overall EP cross section for M(PI+PI-) < 1.5 GEV.
Overall EP cross section, taking into account the J/PSI --> LEPTON+ LEPTON - branching fraction 0.12.
Integrated EP cross section.
Light ion collisions with carbon target at 4.2 GeV/c/N are studied. Pion multiplicity distributions, momentum and angular spectra are analysed. These data are described in terms of models assuming independent interactions of nucleons from the projectile nucleus with the target.
No description provided.
No description provided.
No description provided.