Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2018) 055, 2018.
Inspire Record 1624690 DOI 10.17182/hepdata.78402

A search for heavy neutral Higgs bosons and $Z^{\prime}$ bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to $\tau^+\tau^-$ with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for $Z^{\prime}$ bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude $\tan\beta > 1.0$ for $m_A$ = 0.25 TeV and $\tan\beta > 42$ for $m_A$ = 1.5 TeV at the 95% confidence level. For the Sequential Standard Model, $Z^{\prime}_\mathrm{SSM}$ with $m_{Z^{\prime}} < 2.42$ TeV is excluded at 95% confidence level, while $Z^{\prime}_\mathrm{NU}$ with $m_{Z^{\prime}} < 2.25$ TeV is excluded for the non-universal $G(221)$ model that exhibits enhanced couplings to third-generation fermions.

29 data tables

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Despite listing this as an exclusive final state (as there must be no b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. In the paper, the first bin is cut off at 60 GeV for aesthetics but contains underflows down to 50 GeV as in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Despite listing this as an exclusive final state (as there must be at least one b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. In the paper, the first bin is cut off at 60 GeV for aesthetics but contains underflows down to 50 GeV as in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Despite listing this as an exclusive final state (as there must be no b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

More…

Measurement of exclusive $\gamma\gamma\rightarrow W^+W^-$ production and search for exclusive Higgs boson production in $pp$ collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 94 (2016) 032011, 2016.
Inspire Record 1475477 DOI 10.17182/hepdata.79951

Searches for exclusively produced $W$ boson pairs in the process $pp(\gamma\gamma) \rightarrow pW^+W^-p$ and exclusively produced Higgs boson in the process $pp(gg) \rightarrow pHp$ have been performed using $e^{\pm}\mu^{\mp}$ final states. These measurements use 20.2 fb$^{-1}$ of $pp$ collisions collected by the ATLAS experiment at a center-of-mass energy $\sqrt{s}=8$ TeV at the LHC. Exclusive production of $W^+W^-$ consistent with the Standard Model prediction is found with 3.0$\sigma$ significance. The exclusive $W^+W^-$ production cross-section is determined to be $\sigma (\gamma\gamma\rightarrow W^{+}W^{-}\rightarrow e^{\pm}\mu^{\mp} X) = 6.9 \pm 2.2 (\mathrm{stat.}) \pm 1.4 (\mathrm{sys.})$ fb, in agreement with the Standard Model prediction. Limits on anomalous quartic gauge couplings are set at 95\% confidence-level as $-1.7 \times 10^{-6} < a_0^W/\Lambda^2 < 1.7 \times 10^{-6}$ GeV$^{-2}$and $-6.4 \times 10^{-6} < a_C^W/\Lambda^2 < 6.3 \times 10^{-6}$ GeV$^{-2}$. A 95\% confidence-level upper limit on the total production cross-section for exclusive Higgs boson is set to 1.2 pb.

5 data tables

Observed allowed ranges for 6 dimensional aQGCs, cutoff 500 GeV.

Expected allowed ranges for 6 dimensional aQGCs, no cutoff).

Observed allowed ranges for 8 dimensional aQGCs, cutoff 500).

More…

Search for heavy long-lived charged $R$-hadrons with the ATLAS detector in 3.2 fb$^{-1}$ of proton--proton collision data at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 760 (2016) 647-665, 2016.
Inspire Record 1470936 DOI 10.17182/hepdata.73717

A search for heavy long-lived charged $R$-hadrons is reported using a data sample corresponding to 3.2$^{-1}$ of proton--proton collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Upper limits at 95% confidence level are provided on the production cross section of long-lived $R$-hadrons in the mass range from 600 GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively.

18 data tables

Distributions of beta for data and simulation after a Zmumu selection. The values given for the mean and width are taken from Gaussian functions matched to data and simulation.

Data (black dots) and background estimates (red solid line) for m_beta for the gluino R-hadron search (1000 GeV). The green shaded band illustrates the statistical uncertainty of the background estimate. The blue dashed lines illustrate the expected signal (on top of background) for the given R-hadron mass hypothesis. The black dashed vertical lines at 500 GeV show the mass selection and the last bin includes all entries/masses above.

Data (black dots) and background estimates (red solid line) for m_betagamma for the gluino R-hadron search (1000 GeV). The green shaded band illustrates the statistical uncertainty of the background estimate. The blue dashed lines illustrate the expected signal (on top of background) for the given R-hadron mass hypothesis. The black dashed vertical lines at 500 GeV show the mass selection and the last bin includes all entries/masses above.

More…

Measurement of the Inelastic Proton-Proton Cross Section at $\sqrt{s} = 13$ TeV with the ATLAS Detector at the LHC

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 117 (2016) 182002, 2016.
Inspire Record 1468167 DOI 10.17182/hepdata.74822

This Letter presents a measurement of the inelastic proton-proton cross section using 60 $\mu$b$^{-1}$ of $pp$ collisions at a center-of-mass energy $\sqrt{s}$ of $13$ TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region ($2.07<|\eta|<3.86$) of the detector. A cross section of $68.1\pm 1.4$ mb is measured in the fiducial region $\xi=M_X^2/s>10^{-6}$, where $M_X$ is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this $\xi$ range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with $M_X>13$ GeV. The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross-section of $78.1 \pm 2.9$ mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy.

1 data table

The measured and extrapolated inelastic cross section. The statistical uncertainty is negligible and is therefore displayed as zero. The first systematic uncertainty is the experimental systematic uncertainty apart from the luminosity, the second is the luminosity uncertainty, and the third is the extrapolation uncertainty.