The $pp \to W^{\pm} (\to μ^{\pm} ν_μ) X$ cross-sections are measured at a proton-proton centre-of-mass energy $\sqrt{s} = 5.02$ TeV using a dataset corresponding to an integrated luminosity of 100 pb$^{-1}$ recorded by the LHCb experiment. Considering muons in the pseudorapidity range $2.2 < η< 4.4$, the cross-sections are measured differentially in twelve intervals of muon transverse momentum between $28 < p_\mathrm{T} < 52$ GeV. Integrated over $p_\mathrm{T}$, the measured cross-sections are \begin{align*} σ_{W^+ \to μ^+ ν_μ} &= 300.9 \pm 2.4 \pm 3.8 \pm 6.0~\text{pb}, \\ σ_{W^- \to μ^- \barν_μ} &= 236.9 \pm 2.1 \pm 2.7 \pm 4.7~\text{pb}, \end{align*} where the first uncertainties are statistical, the second are systematic, and the third are associated with the luminosity calibration. These integrated results are consistent with theoretical predictions. This analysis introduces a new method to determine the $W$-boson mass using the measured differential cross-sections corrected for detector effects. The measurement is performed on this statistically limited dataset as a proof of principle and yields \begin{align*} m_W = 80369 \pm 130 \pm 33~\text{MeV}, \end{align*} where the first uncertainty is experimental and the second is theoretical.
The measured differential cross sections ($d\sigma/dp_T$) for $W^+$. The first systematic uncertainty is statistical and the second is systematic.
The measured differential cross sections ($d\sigma/dp_T$) for $W^-$. The first systematic uncertainty is statistical and the second is systematic.
The correlation matrix corresponding to the statistical uncertainties on the differential cross-section ($d\sigma/dp_T$) fit results for $W^+$. To combine with $W^-$, use the rows and columns ordered as $W^+$ and then $W^-$. Assume no correlation in the statistical uncertainties between $W^+$ and $W^-$ (zero entries in the off-diagonal blocks).
This article reports on a search for dijet resonances using $132$ fb$^{-1}$ of $pp$ collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS detector at the Large Hadron Collider. The search is performed solely on jets reconstructed within the ATLAS trigger to overcome bandwidth limitations imposed on conventional single-jet triggers, which would otherwise reject data from decays of sub-TeV dijet resonances. Collision events with two jets satisfying transverse momentum thresholds of $p_{\textrm{T}} \ge 85$ GeV and jet rapidity separation of $|y^{*}|<0.6$ are analysed for dijet resonances with invariant masses from $375$ to $1800$ GeV. A data-driven background estimate is used to model the dijet mass distribution from multijet processes. No significant excess above the expected background is observed. Upper limits are set at $95\%$ confidence level on coupling values for a benchmark leptophobic axial-vector $Z^{\prime}$ model and on the production cross-section for a new resonance contributing a Gaussian-distributed line-shape to the dijet mass distribution.
Observed $m_{jj}$ distribution for the J50 signal region, using variable-width bins and the analysis selections. The background estimate corresponds to the ansatz fit, integrated over each bin.
Observed $m_{jj}$ distribution for the J100 signal region, using variable-width bins and the analysis selections. The background estimate corresponds to the ansatz fit, integrated over each bin.
Observed 95% $\text{CL}_\text{S}$ upper limits on the production cross-section times acceptance times branching ratio to jets, $\sigma \cdot A \cdot \text{BR}$, of Gaussian-shaped signals of 5%, 10%, and 15% width relative to their peak mass, $m_G$. Also included are the corresponding expected upper limits predicted for the case the $m_{jj}$ distribution is observed to be identical to the background prediction in each bin and the $1\sigma$ and $2\sigma$ envelopes of outcomes expected for Poisson fluctuations around the background expectation. Limits are derived from the J50 signal region.
A general search is presented for supersymmetric particles (sparticles) in scenarios featuring compressed mass spectra using proton-proton collisions at a center-of-mass energy of 13 TeV, recorded with the CMS detector at the LHC. The analyzed data sample corresponds to an integrated luminosity of 138\fbinv. A wide range of potential sparticle signatures are targeted, including pair production of electroweakinos, sleptons, and top squarks. The search focuses on events with a high transverse momentum system from initial-state-radiation jets recoiling against a potential sparticle system with significant missing transverse momentum. Events are categorized based on their lepton multiplicity, jet multiplicity, number of b-tagged jets, and kinematic variables sensitive to the sparticle masses and mass splittings. The sensitivity extends to higher parent sparticle masses than previously probed at the LHC for production of pairs of electroweakinos, sleptons, and top squarks with mass spectra featuring small mass splittings (compressed mass spectra). The observed results demonstrate agreement with the predictions of the background-only model. Lower mass limits are set at 95% confidence level on production of pairs of electroweakinos, sleptons, and top squarks that extend to 325, 275, and 780 GeV, respectively, for the most favorable compressed mass regime cases.
Event counts observed in data, $N_{\rm{obs}}$, in each of the model-independent bins, compared with predictions from the control region fit, $N^{\rm{pred}}_{\rm{bkg}}$, their corresponding uncertainties, $\sigma(N^{\rm{pred}}_{\rm{bkg}})$, and the upper limits at 95% CL on the signal strength $(S_{UL}^{95\%})$.
Top squark pair production. Observed upper limits at 95% CL on the product of the cross section and relevant branching fractions, $\sigma (\tilde{\mathrm{t}} \tilde{\mathrm{t}}) \, \mathcal{B}^{2} ( \tilde{\mathrm{t}} \rightarrow \mathrm{t} \tilde{\chi}_1^0 )$, are shown using the color scale where the $\tilde{\mathrm{t}}$ mass is on the $x$-axis and the mass difference between the $\tilde{\mathrm{t}}$ and the LSP is on the $y$-axis
Top squark pair production. Observed upper limits at 95% CL on the product of the cross section and relevant branching fractions, $\sigma (\tilde{\mathrm{t}} \tilde{\mathrm{t}}) \, \mathcal{B}^{2} ( \tilde{\mathrm{t}} \rightarrow \mathrm{t} \tilde{\chi}_1^0 )$, are shown using the color scale where the $\tilde{\mathrm{t}}$ mass is on the $x$-axis and the mass difference between the $\tilde{\mathrm{t}}$ and the LSP is on the $y$-axis
A search for a pair of light pseudoscalar bosons (a$_1$) produced in the decay of the 125 GeV Higgs boson is presented. The analysis examines decay modes where one a$_1$ decays into a pair of tau leptons and the other decays into either another pair of tau leptons or a pair of muons. The a$_1$ boson mass probed in this study ranges from 4 to 15 GeV. The data sample was recorded by the CMS experiment in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponds to an integrated luminosity of 138 fb$^{-1}$. No excess above standard model (SM) expectations is observed. The study combines the 4$τ$ and 2$μ$2$τ$ channels to set upper limits at 95% confidence level (CL) on the product of the Higgs boson production cross section and the branching fraction to the 4$τ$ final state, relative to the Higgs boson production cross section predicted by the SM. In this interpretation, the a$_1$ boson is assumed to have Yukawa-like couplings to fermions, with coupling strengths proportional to the respective fermion masses. The observed (expected) upper limits range between 0.007 (0.011) and 0.079 (0.066) across the mass range considered. The results are also interpreted in the context of models with two Higgs doublets and an additional complex singlet field (2HD+S). The tightest constraints are obtained for the Type III 2HD+S model. In this case, assuming the Higgs boson production cross section equals the SM prediction, values of the branching ratio for the Higgs boson decay into a pair of a$_1$ bosons exceeding 16% are excluded at 95% CL for a$_1$ boson masses between 5 and 15 GeV and $\tanβ$ $\gt$ 2, with the exception of scenarios in which the a$_1$ boson mixes with charm or bottom quark-antiquark bound states.
The observed and expected upper limits at 95% confidence level on the product of the signal cross section and the branching fraction $\sigma (\mathrm{pp} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1\,\mathrm{a}_1) {\mathcal{B}}^{2} (\mathrm{a}_1 \to \tau \tau)$, relative to the inclusive Higgs boson production cross section $\sigma_\text{SM}$ predicted in the SM. The green and yellow bands indicate the regions containing 68% and 95% of the distribution of limits expected under the background-only hypothesis.
The observed and expected upper limits at 95% CLs on $\sigma (\mathrm{pp} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1\,\mathrm{a}_1)$, relative to $\sigma_\text{SM}$, as a function of $m_{\mathrm{a}_1}$ for Type I 2HD+S model ($\tan\beta$ independent).
The observed and expected upper limits at 95% CLs on $\sigma (\mathrm{pp} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1\,\mathrm{a}_1)$, relative to $\sigma_\text{SM}$, as a function of $m_{\mathrm{a}_1}$ for Type II 2HD+S model, $\tan\beta = 5$.
Several new physics models including versions of supersymmetry (SUSY) characterized by $R$-parity violation (RPV) or with additional hidden sectors predict the production of events with top quarks, low missing transverse momentum, and many additional quarks or gluons. The results of a search for top squarks decaying to two top quarks and six additional light-flavor quarks or gluons are reported. The search employs a novel machine learning method for background estimation from control samples in data using decorrelated discriminators. The search is performed using events with 0, 1, or 2 electrons or muons in conjunction with at least six jets. No requirement is placed on the magnitude of the missing transverse momentum. The result is based on a sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to 138 fb$^{-1}$ of integrated luminosity collected with the CMS detector at the LHC in 2016$-$2018. The data are used to determine upper limits on the top squark pair production cross section in the frameworks of RPV and stealth SUSY. Models with top squark masses less than 700 (930) GeV are excluded at 95% confidence level for RPV (stealth) SUSY scenarios.
Cutflows and signal efficiencies for the RPV SUSY model in the $0\ell$ channel corresponding to two values of $m_{\tilde{t}}$.
Cutflows and signal efficiencies for the Stealth SYY SUSY model in the $0\ell$ channel corresponding to two values of $m_{\tilde{t}}$.
Cutflows and signal efficiencies for the RPV SUSY model in the $1\ell$ channel corresponding to two values of $m_{\tilde{t}}$.
Measurements of $W^+W^-\rightarrow e^\pm νμ^\mp ν$ production cross-sections are presented, providing a test of the predictions of perturbative quantum chromodynamics and the electroweak theory. The measurements are based on data from $pp$ collisions at $\sqrt{s}=13$ TeV recorded by the ATLAS detector at the Large Hadron Collider in 2015-2018, corresponding to an integrated luminosity of 140 fb$^{-1}$. The number of events due to top-quark pair production, the largest background, is reduced by rejecting events containing jets with $b$-hadron decays. An improved methodology for estimating the remaining top-quark background enables a precise measurement of $W^+W^-$ cross-sections with no additional requirements on jets. The fiducial $W^+W^-$ cross-section is determined in a maximum-likelihood fit with an uncertainty of 3.1%. The measurement is extrapolated to the full phase space, resulting in a total $W^+W^-$ cross-section of $127\pm4$ pb. Differential cross-sections are measured as a function of twelve observables that comprehensively describe the kinematics of $W^+W^-$ events. The measurements are compared with state-of-the-art theory calculations and excellent agreement with predictions is observed. A charge asymmetry in the lepton rapidity is observed as a function of the dilepton invariant mass, in agreement with the Standard Model expectation. A CP-odd observable is measured to be consistent with no CP violation. Limits on Standard Model effective field theory Wilson coefficients in the Warsaw basis are obtained from the differential cross-sections.
Measured fiducial cross-section compared with theoretical predictions from MiNNLO+Pythia8, Geneva+Pythia8, Sherpa2.2.12, and MATRIX2.1. The predictions are based on the NNPDF3.0 (red squares) and NNPDF3.1 luxQED (blue dots) PDF sets. The nNNLO predictions include photon-induced contributions (always using NNPDF3.1 luxQED) and NLO QCD corrections to the gluon-gluon initial state. The $q\bar{q}\rightarrow WW$ predictions from MiNNLO, Geneva, and Sherpa2.2.12 are combined with a Sherpa2.2.2 prediction of gluon-induced production, scaled by an inclusive NLO K-factor of 1.7. Inner (outer) error bars on the theory predictions correspond to PDF (the combination of scale and PDF) uncertainties. The MATRIX nNNLO QCD $\otimes$ NLO EW prediction using NNPDF3.1 luxQED, the best available prediction of the integrated fiducial cross-section, is in good agreement with the measurement.
Fiducial differential cross-sections as a function of $p_{\mathrm{T}}^{\mathrm{lead.\,lep.}}$. The measured cross-section values are shown as points with error bars giving the statistical uncertainty and solid bands indicating the size of the total uncertainty. The right-hand-side axis indicates the integrated cross-section of the rightmost bin. The results are compared to fixed-order nNNLO QCD + NLO EW predictions of Matrix 2.1, with the NNLO + PS predictions from Powheg MiNNLO + Pythia8 and Geneva + Pythia8, as well as Sherpa2.2.12 NLO + PS predictions. The last three predictions are combined with Sherpa 2.2.2 for the $gg$ initial state and Sherpa 2.2.12 for electroweak $WWjj$ production. These contributions are modelled at LO but a NLO QCD $k$-factor of 1.7 is applied for gluon induced production. Theoretical predictions are indicated as markers with vertical lines denoting PDF, scale and parton shower uncertainties. Markers are staggered for better visibility.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{lead.\,lep.}}$.
A search is performed for dark matter (DM) produced in association with a single top quark or a pair of top quarks using the data collected with the CMS detector at the LHC from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to 138 fb$^{-1}$ of integrated luminosity. An excess of events with a large imbalance of transverse momentum is searched for across 0, 1 and 2 lepton final states. Novel multivariate techniques are used to take advantage of the differences in kinematic properties between the two DM production mechanisms. No significant deviations with respect to the standard model predictions are observed. The results are interpreted considering a simplified model in which the mediator is either a scalar or pseudoscalar particle and couples to top quarks and to DM fermions. Axion-like particles that are coupled to top quarks and DM fermions are also considered. Expected exclusion limits of 410 and 380 GeV for scalar and pseudoscalar mediator masses, respectively, are set at the 95% confidence level. A DM particle mass of 1 GeV is assumed, with mediator couplings to fermions and DM particles set to unity. A small signal-like excess is observed in data, with the largest local significance observed to be 1.9 standard deviations for the 150 GeV pseudoscalar mediator hypothesis. Because of this excess, mediator masses are only excluded below 310 (320) GeV for the scalar (pseudoscalar) mediator. The results are also translated into model-independent 95% confidence level upper limits on the visible cross section of DM production in association with top quarks, ranging from 1 pb to 0.02 pb.
The post-fit $p_{\mathrm{T}}^{\text{miss}}$ distribution of the 1 b jet, 0 forward jet signal region in the all hadronic channel. A representative signal model distribution is shown for the scalar mediator interaction with $(m_{\chi},m_{\phi})=(1,100)$GeV and couplings set to unity. The grey dashed area in the upper panel represents the total uncertainty in all of the backgrounds and the chosen signal model, while in the lower panel it represents only the total uncertainty in the backgrounds.
The post-fit $p_{\mathrm{T}}^{\text{miss}}$ distribution of the 1 b jet, $\geq 1$ forward jet signal region in the all hadronic channel. A representative signal model distribution is shown for the scalar mediator interaction with $(m_{\chi},m_{\phi})=(1,100)$GeV and couplings set to unity. The grey dashed area in the upper panel represents the total uncertainty in all of the backgrounds and the chosen signal model, while in the lower panel it represents only the total uncertainty in the backgrounds.
The post-fit $p_{\mathrm{T}}^{\text{miss}}$ distribution of the $\geq 2$ b jet signal region in the all hadronic channel. A representative signal model distribution is shown for the scalar mediator interaction with $(m_{\chi},m_{\phi})=(1,100)$GeV and couplings set to unity. The grey dashed area in the upper panel represents the total uncertainty in all of the backgrounds and the chosen signal model, while in the lower panel it represents only the total uncertainty in the backgrounds.
A search is presented for hadronic signatures of beyond the Standard Model (BSM) physics, with an emphasis on signatures of a strongly-coupled hidden dark sector accessed via resonant production of a $Z'$ mediator. The ATLAS experiment dataset collected at the Large Hadron Collider from 2015 to 2018 is used, consisting of proton-proton collisions at $\sqrt{s}$ = 13 TeV and corresponding to an integrated luminosity of 140 fb$^{-1}$. The $Z'$ mediator is considered to decay to two dark quarks, which each hadronize and decay to showers containing both dark and Standard Model particles, producing a topology of interacting and non-interacting particles within a jet known as ``semi-visible". Machine learning methods are used to select these dark showers and reject the dominant background of mismeasured multijet events, including an anomaly detection approach to preserve broad sensitivity to a variety of BSM topologies. A resonance search is performed by fitting the transverse mass spectrum based on a functional form background estimation. No significant excess over the expected background is observed. Results are presented as limits on the production cross section of semi-visible jet signals, parameterized by the fraction of invisible particles in the decay and the $Z'$ mass, and by quantifying the significance of any generic Gaussian-shaped mass peak in the anomaly region.
Acceptance times efficiency weighted yields across the signal grid.
The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.2 signal points.
The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.4 signal points.
A search for resonances in top quark pair ($\text{t}\bar{\text{t}}$) production in final states with two charged leptons and multiple jets is presented, based on proton-proton collision data collected by the CMS experiment at the CERN LHC at $\sqrt{s}$ = 13 TeV, corresponding to 138 fb$^{-1}$. The analysis explores the invariant mass of the $\text{t}\bar{\text{t}}$ system and two angular observables that provide direct access to the correlation of top quark and antiquark spins. A significant excess of events is observed near the kinematic $\text{t}\bar{\text{t}}$ threshold compared to the nonresonant production predicted by fixed-order perturbative quantum chromodynamics (pQCD). The observed enhancement is consistent with the production of a color-singlet pseudoscalar ($^1$S$^{[1]}_0$) quasi-bound toponium state, as predicted by nonrelativistic quantum chromodynamics. Using a simplified model for $^1$S$^{[1]}_0$ toponium, the cross section of the excess above the pQCD prediction is measured to be 8.8 $^{+1.2}_{-1.4}$ pb.
Observed cross section of $\eta_t$
Observed values of twice the negative log-likelihood with respect to the best-fit point (2dNLL) as a function of the cross sections of $\eta_t$ and $\chi_t$.
Measurements of the total and differential Higgs boson production cross-sections, via $WH$ and $ZH$ associated production using $H\rightarrow WW^\ast\rightarrow\ellν\ellν$ and $H\rightarrow WW^\ast\rightarrow\ellνjj$ decays, are presented. The analysis uses proton-proton events delivered by the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector between 2015 and 2018. The data correspond to an integrated luminosity of 140 fb$^{-1}$. The sum of the $WH$ and $ZH$ cross-sections times the $H\rightarrow WW^\ast$ branching fraction is measured to be $0.44^{+0.10}_{-0.09}$ (stat.) $^{+0.06}_{-0.05}$ (syst.) pb, in agreement with the Standard Model prediction. Higgs boson production is further characterised through measurements of the differential cross-section as a function of the transverse momentum of the vector boson and in the framework of Simplified Template Cross-Sections.
Post-fit distribution of $ANN_{Zdom}$ in the Z-dominated SR. The post-fit result is obtained from the combined 2-POI fit described in section 9.1 of the paper.
Best-fit values of the total $WH$, $ZH$, and $VH$ cross sections times the $H\rightarrow WW^{*}$ branching ratio.
Observed profile likelihood as a function of $\sigma\times\mathcal{B}_{H\rightarrow WW^{*}}$ normalised by the SM expectation for the $VH$ and $WH/ZH$ measurements from the combined 1- and 2-POI fits, respectively