We report the measurement of secondary charge and isotopic fragmentation cross sections in a liquid hydrogen target from 30 incident beams of relativistic nuclei ranging from 10B to 55Mn. These individual beams were obtained by initially accelerating 580 MeV/nucleon 40Ar and 630 MeV/nucleon 56Fe nuclei and letting these nuclei interact in a thin CH2 target in the beam line. The fragments of these interactions were then focused according to their A/Z ratios onto a hydrogen target and the charge and isotopic composition of the fragmentation in this target was measured using our standard cosmic ray telescope. Several of these nuclei have had their cross sections measured previously and a comparison with earlier data confirms the estimated precision ∼5% of the new cross section data. The 30 nuclei for which the cross sections were measured doubles the previously reported data for 15 nuclei from several experiments in the charge range from Li to Ni. The systematics of these new cross sections are discussed both with respect to the charge changing and isotopic cross sections. These systematics will lead to improvements in the productive capability of the formulas used to describe the unmeasured cross sections. It should be noted, however, that from the point of view of the propagation of galactic cosmic rays through the interstellar medium, which is one of the main goals of this experiment, the fragmentation cross sections have now been measured at at least one energy for over 98% of the arriving particles with Z=3–28.
No description provided.
No description provided.
We have measured the charge-changing cross sections of 10.6 GeV/nucleon Au197 nuclei interacting in targets of CH2 (polyethylene), C, Al, Cu, Sn, and Pb. Cross sections for H are calculated from those measured in C and CH2. The total charge-changing cross sections are higher than those measured at energies of ≤1 GeV/nucleon. The measured cross sections for the heavier targets are somewhat larger than those predicted by a model based on data taken at lower energies with lighter targets. Partial charge-changing cross sections for the production of fragments from the incident Au projectiles were measured for charge changes (ΔZ) from ΔZ=+1,80Hg, down to approximately ΔZ=-29,50Sn. In comparison to lower energy measurements, these partial cross sections are found to be smaller for small ΔZ and larger or the same for large ΔZ. The H partial cross sections are found to follow a power law in ΔZ similar to that for heavier targets, instead of the exponential form observed at lower energies. Factorization is found to hold for all partial cross sections with ΔZ greater than two. In the heavier targets, the cross sections for one and two proton removal have significant contributions from electromagnetic dissociation. The electromagnetic dissociation contribution to the total cross section is derived and found to be relatively small, but with a strong dependence on the charge of the target nuclei of the form ZT1.75±0.01.
TARGET NUCLEUS=CH2(POLYETHYLENE).
TARGET NUCLEUS=CH2(POLYETHYLENE).
A liquid hydrogen target was used to study the nuclear fragmentation of beams of relativistic heavy ions, Ne22 to Ni58, over an energy range 400 to 900 MeV/nucleon. The experiments were carried out at the Lawrence Berkeley Laboratory Bevalac HISS facility, using the charge-velocity-rigidity method to identify the charged fragments. Here we describe the general concept of the experiment and present total charge-changing cross sections obtained from 17 separate runs. These new measured cross sections display an energy dependence which follows semiempirical model predictions. The mass dependence of the cross sections behaves as predicted by optical models, but within the experimental energy range, the optical model parameters display a clear energy dependence. The isospin of the projectile nuclei also appears to be an important factor in the interaction process.
No description provided.
No description provided.
No description provided.
The fragmentation of 1.2 GeV per nucleon La139 nuclei has been studied. Total charge changing cross sections for H (CH2-C), C, and Pb target nuclei, and elemental production cross sections for C and CH2 targets for 1≤ΔZ≤30 have been measured. For heavy projectile fragments, the projected transverse momenta extracted are generally larger than predicted by models based on the internal momenta of nucleons in nuclei. Fits to the heavy fragment momentum distributions yield additional transverse momenta or ‘‘bounce-off’’ which range from ≃500 to 1000 MeV/c.
No description provided.
Relativistic iron, lanthanum, holmium, and gold projectile nuclei with several different energies have been fragmented in targets of polyethylene, carbon, aluminum, copper, and lead. Our detectors cleanly resolve the individual charges of the heaviest of these fragments and provide some limited information on the masses. We have measured 1256 elemental partial cross sections for the production of fragments from interactions in these target materials. Values have been derived for another 417 cross sections in a hydrogen medium. These cross sections depend on the energy and mass of the projectile nuclei as well as on the nature of the target. Total charge-changing cross sections were also found, but only in a composite target, and have been shown to be weakly dependent on energy. The mean mass losses observed for fragments that have lost a few protons show that typically many neutrons are lost with each proton, producing fragment nuclei that must be highly proton rich, and consequently very unstable. The cross sections for charge pickup on heavy targets show a rapid increase with decreasing energy, particularly for the heaviest targets. The systematics of the dependencies of the partial cross sections will be discussed in a companion paper.
TARGET NUCLEUS=CH2.
No description provided.
No description provided.
Measurements of the partial charge-changing cross sections for the fragmentation of relativistic iron, lanthanum, holmium, and gold nuclei of several different energies incident on targets of polyethylene, carbon, aluminum, and copper have been reported in an accompanying paper. This paper describes the systematics of the variations of these cross sections with energy, projectile, target, and fragment. We have been able to generate a seven-parameter global fit to 795 measured cross sections for the heavy targets which fits the data with a standard deviation of 7%. We have also generated a similar global fit to 303 measured cross sections for a hydrogen target which fits the data with a standard deviation of 10%. These representations imply that the hypothesis of limiting fragmentation is only accurate to some 20–30 %. Weak factorization can apply, but fits that are marginally better, and more physically plausible, can be obtained without factorization. We have identified, and discussed, a number of caveats to the applicability of these fits outside, and inside, the range of energies and masses covered. Excessively large cross sections for the loss of a single proton from the projectile nuclei suggest electromagnetic dissociation. The cross sections for fragments that experience large charge changes appear to become independent of the size of the charge change. Very heavy projectiles have a significant probability of experiencing fission.
No description provided.
No description provided.
No description provided.
A nuclear photographic emulsion method was used to study the charge-state, ionization, and angular characteristics of secondaries produced in inelastic interactions of 56 Fe nuclei at 1.8 GeV/nucleon with H, CNO, and AgBr nuclei. The data obtained are compared with the results of calculations made in terms of the Dubna version of the cascade evaporation model (DCM). The DCM has been shown to satisfactorily describe most of the interaction characteristics for two nuclei in the studied reactions. At the same time, quantitative differences are observed in some cases.
No description provided.
No description provided.
NUCLECS IS CNO.
We used CR39 plastic nuclear track detectors (C12H18O7) in combination with automatic track measurement techniques to determine total charge changing and partial cross sections for the production of fragments of chargeZ F =6 toZ F =15 in collisions of32S beam nuclei at energies of 0.7, 1.2 and 200 GeV/nucleon in targets H, C, CR39, CH2, Al, Cu, Ag and Pb. By application of factorization rules measured partial cross sections are separated into pure nuclear and electromagnetic components. Total and partial cross sections for electromagnetic dissociation are compared with theoretical models. The energy dependence of pure nuclear cross sections is investigated.
No description provided.
NUCLEUS=12C 18H 7O.
NUCLEUS=18C 38H 7O.
We used CR39 plastic nuclear track detectors (C12H18O7) in combination with automatic track measurement to determine total charge changing and partial cross sections for the production of fragments of chargeZ=6 andZ=7 in collisions of16O beam nuclei at energies of 60 GeV/nucleon and 200 GeV/nucleon in targets H, C, CR39, CH2, Al, Cu, Ag and Pb. Total charge changing cross sections due to the process of electromagnetic dissociation are calculated based on a theoretical model and found to be consistent with total and partial electromagnetic dissociation cross sections derived from this experiment. The energy dependence of pure nuclear fragmentation is investigated.
OBS = TOTAL CHARGE CHANGING CROSS SECTION.
No description provided.
No description provided.