None
No description provided.
Fermilab experiment 711 has investigated proton-nucleus collisions in which two high-transverse-momentum hadrons are produced forming high-mass ++, +-, and -- charged states, using an 800-GeV/c proton beam on targets of beryllium, aluminum, iron, and tungsten. Our data cover the range in dihadron mass from 6 to 15 GeV/c2. We show here that the dependence of the cross section on atomic weight A can be parametrized as Aα where α=1.043±0.011(stat)±0.025 (syst), and is independent of the charge state of the dihadron system.
No description provided.
No description provided.
No description provided.
We present results on Λc+ production in 29-GeV e+e− annihilation. The Λc+ are observed via their semileptonic decays to Λe+X and Λμ+X. With radiative corrections, we find σ(e+e−→Λc+X)〉BΛc+→eΛX)= 1.5±0.6±0.5 pb or 0.0038±0.0015±0.0012 Λc+→Λe+X decay per hadronic event, and σ(e+e−Λc+X)B(Λc+→μΛX)= 1.4±1.4±0.4 pb or 0.0035±0.0035±0.0011 Λc+→Λμ+X decay per hadronic event. These results can be used to place constraints on the predictions of various production models.
Cross sections * branching ratio for LAMBDA/C+ production in LAMBDA E+ decay channel.
Cross sections * branching ratio for LAMBDA/C+ production in LAMBDA MU+ decay channel.
This paper reports cross-section measurements for the ρ0 and K*(890) vector mesons produced in e+e− annihilation at s=29 GeV. The data, which were taken with the High Resolution Spectrometer operating at the SLAC colliding-beam facility PEP, correspond to an integrated luminosity of 291 pb−1. The measured multiplicities for fractional momentum x>0.05 are Nρ0=0.79±0.04 and NK*0(890)=0.53±0.04. The measured fragmentation functions agree well with the predictions of the Lund model and when extrapolated to threshold, the corresponding total multiplicities are Nρ0=0.90±0.05 and NK*0(890)=0.59±0.05.
No description provided.
No description provided.
No description provided.
The reaction pp→p f (K + K − K + K − )p s in which the K + K − K + K − system is centrally produced has been studied at 300 GeV/ c . φφ production has been observed and the ratio σ (φK + K − )/ σ ( φφ ) is 1.0±0.3. The cross section for central production of φφ is found to be the same at 300 GeV/ c and 85 GeV/ c . An angular analysis of the φφ system favours J P =2 + over 0 − .
No description provided.
Charged pion production induced by 201 MeV protons on Ni58 and Ni64 has been studied. The double differential cross sections have been measured over a wide angular range. Different behavior of the angular distribution is observed for low and high energy pions. The yield of positive pions shows a pronounced forward peaked component. The deduced total production yields are about the same for (p,π+) on both isotopes whereas that for (p64,π−) is twice as large as for (p58,π−).
MOMENTUM ACCEPTANCE OF SPECTROMETER = 2.5 PCT, AND TOTAL EFFICIENCY =0.8 +-0.05. THE TARGET THICKNESS WERE 42.7 +-0.2 AND 41. +-0.2 MG/(CM**2), ENRICHED TO 99.3 AND 98.2 PCT FOR NI58 AND NI64 RESPECTIVELY.
Results are presented of an analysis of the reaction pp→p f (K S 0 K ± π ∓ )p s at 300 GeV/ c . Clear f 1 (1285) and f 1 (1420) signals are seen. A spin-parity analysis shows that both are consistent with being 1 ++ states. The f 1 (1420) is found to decay only to K ∗ K and no 0 −+ or 1 +− waves are required to describe the data. The production of the f 1 (1285) as a function of energy is not the same as that for the f 1 (1420) whose cross section is found to be constant with energy.
No description provided.
The total cross section for e + e − annihilation into hadrons has been measured for CM energies ranging from 50 to 57 GeV. We fit the predictions of the standard model to these measurements and those at lower energies. The mass of the Z 0 boson, M Z , and the QCD scale parameter, Λ MS , are derived from the fit. The results are M Z =88.6 −1.8 +2.0 GeV/ c 2 , and Λ MS =0.15 −0.11 +0.16 GeV .
No description provided.
Inclusive production cross sections of charged pions on carbon, copper and bismuth by neutrons in the energy range of 300–580 MeV have been measured from 54° to 164°. The invariant cross sections can be expressed by Full-size image (<1 K) for the high-energy part of the pion spectra. The slope parameter exhibits a systematic variation with neutron energy and emission angle for the three targets. The dependence of the pion production on the target mass number varies strongly with pion energy and emission angle. The production cross sections are compared with the model of quasi-two-body scaling, the moving-source model and with intranuclear cascade calculations.
No description provided.
Inclusive cross sections for production of protons, deuterons and tritons by neutrons in the energy range of 300–580 MeV on copper and bismuth have been measured at five angles between 54° and 164°. The systematic dependence of the invariant cross sections on incident energy and emission angle are evaluated. For the study of the mass-number dependence earlier data on carbon are included. The results are discussed on the basis of different models, like quasi-two-body sealing or moving-source model.
THE ERRORS VARY BETWEEN 2 AND 9 PCT.
THE ERRORS VARY BETWEEN 2 AND 9 PCT.
THE ERRORS VARY BETWEEN 2 AND 9 PCT.