The differential cross section for charge-exchange scattering of negative pions by hydrogen has been observed at 230, 260, 290, 317, and 371 Mev. The reaction was observed by detecting one gamma ray from the π0 decay with a scintillation-counter telescope. A least-squares analysis was performed to fit the observations to the function dσdω=Σl=15alPl−1(cosθ) in the c.m. frame. The best fit to our experimental measurements requires only s- and p-wave scattering. The results (in mb) are: The least-squares analysis indicates that d-wave scattering is not established in this energy range.
No description provided.
No description provided.
No description provided.
A strong-focusing momentum channel has been arranged to form a beam from antiprotons produced by 6.0-Bev protons striking an internal target of the Bevatron. The channel consists of five 4-inch-diameter magnetic quadrupole lenses and two deflecting magnets adjusted to give a ±5% momentum interval. The antiprotons were selected from a large background of mesons by a scintillation counter telescope with a time-of-flight coincidence circuit having a resolution of ±2×10−9 second. This system allowed detection of approximately 400 antiprotons per hour. With a liquid hydrogen attenuator, the total antiproton-proton cross section at four different energies, 190, 300, 500, and 700 Mev, has been observed to be 135, 104, 97, and 94 mb, respectively. Also, the total cross sections for antiprotons incident on Be and C have been measured at two energies. The inelastic cross sections for carbon have been measured by observing the pulse heights produced by the interactions in a target of liquid scintillator. To measure the inelastic cross section for a high-Z element, lead wafers were immersed in the liquid scintillator, and to select inelastic events the pulse heights were measured.
.
.
.
212 interactions of 2.75-Bev protons have been observed in a hydrogen-filled diffusion cloud chamber. The data indicate an elastic cross section of 15 millibarns, with about 9 millibarns cross section for single pion production, 13 millibarns for double, and 4 for triple. There is one example of quadruple pion production. One definite example of the production of heavy unstable particles was observed, and two doubtful cases. The median elastic scattering angle was 19° in the c.m. system. Angle and momentum distributions for inelastic events are consistent with those observed at lower energies.
'1'. '2'. '1'. '3'.
A beam of ∼200-Mev π+ mesons was defined inside the vacuum chamber of the Nevis Cyclotron. Nuclear emulsions were exposed to a flux of about 104 mesons/cm2. The plates were scanned for pion-hydrogen scatterings and 103 such events were observed in two interaction energies, 151±7 Mev and 188±8 Mev. We obtain total cross sections of 152±31 and 159±34×10−27 cm2, respectively. The data suggest that the angular distribution changes from backwards peaked to almost symmetric over this energy interval. Our observations are not in agreement with the hypothesis of a P32-wave resonance in this energy region. The best fit to the combined results includes a D-wave contribution of -5.4°, although satisfactory agreement may be obtained with only S and P waves.
Axis error includes +- 0.0/0.0 contribution (?////Due to flux, scanning efficiency, doubtful and background events, and thesmall uncertainty in the density of hydrogen in the emulsion).
Axis error includes +- 0.0/0.0 contribution (?////Due to flux, scanning efficiency, doubtful and background events, and thesmall uncertainty in the density of hydrogen in the emulsion).
None
No description provided.
No description provided.
No description provided.
On the electron-positron storage ring VEPP-2M using the Cryogenic Magnetic Detector, the cross section of the e+e- -> π+π-π0 process was measured in the energy range 2x420-2x510 MeV. The energy dependence of the cross section is consistent with the predictions of the vector dominance model taking into account the interference of omega and phi mesons. The optimal value of the omega-phi interference phase is 136+-36+-10 degree.
The Born cross section of the process e+e- -> pi+pi-pi0.