Rapidity and transverse momentum distributions in 6.4-TeV S + Pb interactions from CERN EMU05 experiments. EMU-005 experiment

Iyono, A. ; Takahashi, Y. ; Gregory, J.C. ; et al.
Nucl.Phys.A 544 (1992) 455C-458C, 1992.
Inspire Record 343252 DOI 10.17182/hepdata.36672

Mixed transverse(P T ) momentum and rapidity distributions of charged particles produced in 200 GeV/AMU heavy ion collisions are obtained with Magnetic-Interferometric-Emulsion-Chamber ( MAGIC ) by CERN-EMU05 experiments. The P T spectra at different rapidity regions showed no anomalous enhancement of low P T components over a conventional, single exponential function with slope values ranging from 160 to 200 MeV/c.

1 data table

EVENTS SELECTED FOR THE ANALYSIS ARE THOSE WITH CHARGED MULTIPLICITY MORE THAN 400 FOR CENTRAL S+PB COLLISIONS.


The Temperatures of protons and pi- mesons in central nucleus-nucleus interactions at a momentum of 4.5-GeV/c per incident nucleon

Chkhaidze, L. ; Dzhobava, T. ; Kharkhelauri, L. ; et al.
Z.Phys.C 54 (1992) 179-183, 1992.
Inspire Record 339571 DOI 10.17182/hepdata.14709

An estimate of the temperature of protons andπ− mesons in central He−Li, He−C, C−C, C−Ne, C−Cu, C−Pb, O−Pb, Mg−Mg interactions is presented. The results indicate an increase of the proton temperature with increasing mass numbers of projectile and target nuclei (Ap,AT) fromTp=(118±3) MeV for He−Li toTp=(141±2) MeV for C−Pb. The temperature ofπ− mesons does not depend onAP,AT andTπ≃95 MeV. A satisfactory fit forπ− mesons in C−Cu, C−Pb, O−Pb, Mg−Mg collisions can be achieved by using a form involving two temperatures,T1 andT2. The relative yield of the high temperature component (T2) is ≅24% for C−Cu, C−Pb, and Mg−Mg interactions. The observed results forTP in C−Ne, C−Cu and C−Pb collisions are consistent with the prediction of the thermodynamic hagedorn model.

4 data tables

for C-CU and C-PB YRAP=0.3-1.7.

THE D(N)/D(PT) distribution has been fitted by the form: PT*ET*K1(SLOPE*ET), where K1 is Mac-Donaldis function. for C-CU and C-PB YRAP=0.3-1.7.

No description provided.

More…

The Temperature of negative pions in light ions collisions with carbon and tantalum nuclei at 4.2-A/GeV/c

Backovic, S. ; Salihagic, D. ; Simic, L. ; et al.
JINR-E1-91-376, 1991.
Inspire Record 322978 DOI 10.17182/hepdata.39403

None

1 data table

THE SLOPE IS DETERMINED FROM THE FIT OF THE INVARIANT SPECTRUM (1/N)* (1/(2*3.14*PT))*D(N)/D(PT) BY A FORMULA MT*SUM(N=1,...) K1(N*SLOPE*MT), WHERE K1 IS MACDONALD FUNCTION.


Multiplicity, Momentum and Angular Characteristics of $\pi^-$ Mesons for $p$ C, $d$ C, $\alpha$ C and C C Interactions at 4.2-{GeV}/$c$ Per Nucleon

The Alma Ata-Baku-Belgrade-Bucharest-Dubna-Kishinev-Leipzig- Moscow-Prague-Samarkand-Sofiya-Tashkent-Tbilisi-Ulan Bator-Varna collaboration Agakishiev, G.N. ; Akhababian, N. ; Armutliisky, D. ; et al.
Z.Phys.C 27 (1985) 177, 1984.
Inspire Record 203342 DOI 10.17182/hepdata.1999

Light ion collisions with carbon target at 4.2 GeV/c/N are studied. Pion multiplicity distributions, momentum and angular spectra are analysed. These data are described in terms of models assuming independent interactions of nucleons from the projectile nucleus with the target.

18 data tables

No description provided.

No description provided.

No description provided.

More…