Energy spectra of protons, deuterons and tritons from the annihilation of antiprotons stopped in 12 C, 40 Ca, 63 Cu, 92,98 Mo and 238 U have been measured with a Ge-detector telescope. Parameters related to the shape of the spectra were calculated and their dependence on target and ejectile mass number was determined. Yields per p̄ of directly emitted protons, deuterons and tritons and of evaporated protons were estimated.
THE PROTON SPECTRA WERE FITTED WITH THE EXPRESSION N(E)=N1*EXP( -SLOPE(Q=1)*E)+N2*EXP(-SLOPE(Q=2)*E).
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
Measurements of the partial charge-changing cross sections for the fragmentation of relativistic iron, lanthanum, holmium, and gold nuclei of several different energies incident on targets of polyethylene, carbon, aluminum, and copper have been reported in an accompanying paper. This paper describes the systematics of the variations of these cross sections with energy, projectile, target, and fragment. We have been able to generate a seven-parameter global fit to 795 measured cross sections for the heavy targets which fits the data with a standard deviation of 7%. We have also generated a similar global fit to 303 measured cross sections for a hydrogen target which fits the data with a standard deviation of 10%. These representations imply that the hypothesis of limiting fragmentation is only accurate to some 20–30 %. Weak factorization can apply, but fits that are marginally better, and more physically plausible, can be obtained without factorization. We have identified, and discussed, a number of caveats to the applicability of these fits outside, and inside, the range of energies and masses covered. Excessively large cross sections for the loss of a single proton from the projectile nuclei suggest electromagnetic dissociation. The cross sections for fragments that experience large charge changes appear to become independent of the size of the charge change. Very heavy projectiles have a significant probability of experiencing fission.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
We have measured the antiproton-proton total cross section at √s =1.8 TeV at the Fermilab Tevatron Collider; the value obtained is 78.3±5.9 mb. B, the nuclear slope parameter for elastic scattering, was measured to be 16.3±0.5 (GeV/c)−2. From these data, we derive a value for the total elastic cross section.
Nuclear Store Parameter.
Total cross section measurement. Errors contain systematic effects folded including a 15 PCT error in luminosity measurement which dominates the error.
Total cross section assuming RHO = 0.145 (low energy fit). If RHO is taken as 0.24 obtained by UA4 at sqrt(s) = 546 GeV, the value of SIG is reduced by 1.8 PCT.
None
No description provided.
No description provided.
(1/N)*D(N)/D(P) HAS BEEN FITTED BY (P/MEAN(N=P))**POWER* EXP(-SLOPE*SQRT(P/MEAN(N=P))).
None
43 EVENTS WITH LAMBDA, 54 EVENTS WITH KS.
43 EVENTS WITH LAMBDA, 54 EVENTS WITH KS.
43 EVENTS WITH LAMBDA, 54 EVENTS WITH KS. D(N)/D(P) WAS FITTED BY P**2*EXP(-SLOPE*EKIN).
The ratio of the real to the imaginary part of the pp forward elastic-scattering amplitude ϱ has been measured at 550, 757, and 1077 MeV/ c at LEAR, using the Coulomb-nuclear interference method. The results obtained for ρ and b , the nuclear slope, are ϱ = 0.084 ± 0.051 and b = 20.9 ± 2.1 (GeV/ c ) −2 at 550 MeV/ c , ϱ = 0.102 ± 0.043 and b = 18.0 ± 0.5 (GeV/ c ) −2 = at 757 MeV/ c , and ϱ = 0.059 ± 0.035 and b = 15.2 ± 0.3 (GeV/ c ) −2 at 1077 MeV/ c .
Error on SLOPE is statistical only.
Measured differential cross sections corrected for small-angle trigger efficiency and absorption losses. Statistical errors only.
Measured differential cross sections corrected for small-angle trigger efficiency and absorption losses. Statistical errors only.
Data on the reactions (K+/π+)p→(K+/π+)pπ+π- and (K+/π+)p→(K+/π+)p2π+2π-, obtained with the European Hybrid Spectrometer, are presented and compared with data at lower energies. The contribution of beam and target diffractive dissociation and double Pomeron exchange, and porperties of these reactions are discussed.
No description provided.
No description provided.
No description provided.
Calorimeter measurements of dσ de t for pp, dd, pα , and αα collisions at S nn =31.5 GeV are presented for the pseudorapidity interval | η cm | ⩽ 0.7, extending over eight decades to E t ⩾ 30 GeV. The data are compared with models that predict nuclear cross sections directly from pp data, under the assumption of independent nucleon scatters.
The distributions are fitted D(SIG)/D(ET)=CONST*ET**POWER*EXP(-SLOPE*ET).
None
No description provided.
No description provided.
No description provided.