Evidence for a new meson decaying into ηη′ has been found in 38 GeV π − p charge-exchange interactions. The mass and the width of this meson are (1917 ± 15) MeV and (90 −50 +35 ) MeV, respectively. Possible spin and parity assignments are J PC = 0 ++ , 1 −+ or 2 ++ , isospin and G -parity are I G = 0 + . The t -dependence of the differential cross section follows an exponential behaviour exp( bt with a small slope: b = (2±1) (GeV/ c ) −2 .Upper limits on its decay into ππ, ηη and K K exotic interpretation of this meson.
No description provided.
Measurements have been made of the differential cross section and asymmetry A on for p p elastic scattering at 15 incident momenta between 497 MeV/ c and 1550 MeV/ c . The angular range where both particles have enough energy to traverse target and setup has been covered. The results are compared with predictions of various N N potential models. None of these models fully explains the present results, although the general trend of the data is predicted correctly.
No description provided.
No description provided.
No description provided.
We report results from a measurement of antiproton-proton and proton-proton small-angle elastic scattering at √ s = 24.3 GeV in the range 0.001 ⩽ | t | ⩽ 0.06 (GeV/ c ) 2 . The measurement was performed at the CERN p p Collider by using silicon detectors to observe protons recoiling from a hydrogen cluster-jet target intercepting the stored p and p beams. Fits to the measured differential cross sections yield the ratio of the real to the imaginary part of the forward nuclear scattering amplitude ρ and the nuclear slope parameter b for both p p and pp. We find that the difference Δρ = ρ ( p p ) − ρ( pp ) = 0.031 ± 0.010 agrees with conventional fits and disagrees with the “odderon” fit designed to accommodate the recent UA4 measurement of ρ( p p) at 546 GeV.
Data requested from authors.
No description provided.
Nuclear slopes fixed to world average.
None
No description provided.
No description provided.
'CHARGED EXCHANGED REACTION', MOMENTUM OF N IS GREATER THAN MOMENTUM OF EACH PROTON.
None
AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).
AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).
AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).
None
THE MULTIPLICITY OF CHARGED PIONS HAS BEEN FITTED BY THE FORMULA: MULT(PI+-)=CONST(Q=1)+CONST(Q=2)*EXP(+SLOPE*2*SQRT(LN(S))), WHERE S IS THE TOTAL ENERGY SQUERED OF THE SYSTEM PROJECTILE - PARTICIPATOR AND IS DEFINED AS 2*E(P=1)*(TARGET MASS), WHERE TARGET MASS HAS BEEN OBTAINED AS A SUM OF (E-PL) OVER SECONDARY PARTICLES.
THE AVERAGE PT OF CHARGED PIONS HAS BEEN FITTED BY THE FORMULA: MEAN(N=PT)=CONST(Q=1)+CONST(Q=2)*EXP(SLOPE*SQRT(LN(S))), WHERE S IS THE TOTAL ENERGY SQUERED OF THE SYSTEM PROJECTILE - PARTICIPATOR AND IS DEFINED AS 2*E(P=1)*(TARGET MASS), WHERE TARGET MASS HAS BEEN OBTAINED AS A SUM OF (E-PL) OVER SECONDARY PARTICLES.
THE AVERAGE PT**2 OF CHARGED PIONS HAS BEEN FITTED BY THE FORMULA: MEAN(N=PT**2)=CONST(Q=1)+CONST(Q=2)*EXP(SLOPE*SQRT(LN(S))), WHERE S IS THE TOTAL ENERGY SQUERED OF THE SYSTEM PROJECTILE - PARTICIPATOR AND IS DEFINED AS 2*E(P=1)*(TARGET MASS), WHERE TARGET MASS HAS BEEN OBTAINED AS A SUM OF (E-PL) OVER SECONDARY PARTICLES.
None
PION SPECTRA HAVE BEEN FITTED BY: E*D(SIG)/D3(P)=CONST(Q=1)* EXP(-SLOPE(Q=1)*EKIN)+CONST(Q=2)*EXP(-SLOPE(Q=2)*EKIN).
We have studied proton-antiproton elastic scattering at s=1800 GeV at the Fermilab Collider, in the range 0.02<|t|<0.13 (GeV/c)2. Fitting the distribution by exp(−B|t|), we obtain a value of B of 17.2±1.3 (GeV/c)−2.
No description provided.
Error contains estimate of systematic effects.
None
No description provided.
No description provided.
Recent results from the NA35 Collaboration are presented for the reactions of 60 and 200 GeV/nucleon p and 16 O, and 200 GeV/nucleon 32 S with various targets ranging from S to Au. Midrapidity transverse energy distributions and forward energy flow, p⊥ spectra and rapidity distributions of hadrons are presented. Two-pion interferometry results are discussed. Neutral strange particle yields and p⊥ distributions are presented. Conclusions are drawn from the experimental results.
No description provided.
No description provided.
No description provided.