None
No description provided.
None
BEAM NUCLEUS ARE MIXTURE OF NE AND MG.
BEAM NUCLEUS ARE MIXTURE OF NE AND MG.
BEAM NUCLEUS ARE MIXTURE OF NE AND MG.
None
THE BETTER FIT FOR PI- AND BARIONBAR IS THE SUM OF TWO EXPONENT: A*EXP(-B1*PT**2)+D*EXP(-B2*PT**2).FOR PI- B1=30+-4 AND B2=6.3+-.3 .FOR BARIONBAR B1=46+-18 AND B2=3.9+-.5.
No description provided.
No description provided.
Data are presented on exclusive ρ0 and ϕ production in deep inelastic muon scattering from a target consisting mainly of nitrogen. The ratio of the total cross sections for ρ0 and ϕ production is found to be 9∶(1.6±0.4) at 〈Q2〉=7.5 GeV2, consistent with theSU(3) prediction of 9∶2. Thet dependence for exclusive ρ0 production is found to become shallover asQ2 increases and, for largeQ2, thet dependence is typical of that for a hard scattering process. Furthermore, the ratio of the cross sections for coherent: incoherent production from nitrogen is found to decrease rapidly withQ2. Such behaviour indicates that even for exclusive vector meson production the virtual photon behaves predominantly as an electromagnetic probe.
No description provided.
No description provided.
No description provided.
Results of fitting the differential distributions in x F and p T 2 of D mesons produced in 400 GeV/ c p-p interactions to the form d 2 σ d x F d p T 2 ∝(1−x F ) n exp [−(p T 2 /〈p T 2 〉)] are discussed. The D + distribution is found to be relatively hard [ n =3.1±0.8〈 P t 2 〉=1.32±0.27 (GeV/ c ) 2 ] and the D̄ 0 distribution relatively soft [ n =8.1±1.9,〈 p T 2 〉=0.62±0.14 (GeV/ c ) 2 ] compared to the average for all D's [ n =4.9±0.5,〈 p T 2 〉=0.99±0.10 (GeV/ c ) 2 ]. It is suggested that these distributions could reflect contribution of leading di-quarks in pp collisions. Comparison is made with evidence for leading quarks in charm production in 360 GeV/ cπ − p interactions.
The invariant (C=INV) and non-invariant (C=NON-INV) distributions are fitted to (1-XL)**POWER. Pt distribution is fitted to EXP(-PT**2/SLOPE).
None
No description provided.
No description provided.
MOMENTUM SPECTRA IN THE WINDOW P=0.1-6.0 HAVE BEEN FITTED BY THE FORMULA: (1/N)*D(N)/D(P)=CONST(Q=1)*EXP(-SLOPE(Q=1)*P)+CONST(Q=2)*EXP (-SLOPE(Q=2)*P).
Two high statistics measurements of antiproton-proton small-angle elastic scattering, at p = 233 MeV/ c and p = 272 MeV/ c , are presented. The measurements were carried out at the LEAR facility at CERN. By the Coulomb-nuclear interference method, values are obtained for the real-to-imaginary ratio ρ of the p̄p forward nuclear scattering amplitude and for its exponential slope b : ρ = + 0.041 ± 0.026 and b = 71.5 ± 4.5 (GeV/ c ) −2 at 233 MeV/ c and ρ = −0.014 ± 0.027 and b = 47.7 ± 2.7 (GeV/ c ) −2 at 272 MeV/ c . The method to derive these values is discussed in detail and so are the uncertainties contributing to their systematic error. The results are compared with predictions from forward dispersion relation calculations and with predictions from p̄p potential models.
The corrected cross section is the measured divided by the average folding correction given in the paper.
The corrected cross section is the measured divided by the average folding Correction given in the paper.
Fits to data use the value of total cross sections of 263 & 296 mb for 272 & 233 Mev respectively derived from the authors total cross sections measurement. ETA is the spin dependence parameter.
Results are presented on π + p and K + p elastic scattering at 250 GeV/ c , the highest momentum so far reached for positive meson beams. The experiment (NA22) was performed with the european hybrid spectrometer. The π + p elastic cross section stays constant with energy while the K + p cross section increases.
No description provided.
No description provided.
ERRORS IN ELASTIC CROSS SECTIONS INCLUDE SYSTEMATIC ERRORS.
We have measured the inclusive production properties of D and D messons produced from pp interactions at s =27.4 GeV . The differential production cross section is well represented by the empirical form d 2 σ d x F d P 2 T = 1 2 [σ ( D / D )(n+1)b](1−|x F |) n exp (−bp 2 T ) with n=4.9 ± 0.5, b=(1.0±0.1)( GeV /c) −2 , and the inclusive D / D cross section σ ( D / D ) is (30.2±3.3) ωb. The QCD fusion model predicts D / D production which is in good agreement with our data except for the magnitude of the cross section which depends sensitively on the assumed mass of the charm quark.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.