Final results are presented of the analysis of the elastic channel in an exposure of 40 000 pictures at each of the four incident K + momenta 2.11, 2.31, 2.5 and 2.72 GeV/ c taken in the 1.5 m British National Hydrogen Bubble Chamber at the 8 GeV/ c proton synchrotron at the Rutherford High Energy Laboratory. Differential cross sections are presented and the results are compared with other published data. A Legendre polynomial analysis requires partial waves up to G wave at all momenta. For the backward peak, visible at each momentum, the slope and the intercept are calculated. A comparison of the forward peak is made with extrapolations from Regge models fitted at higher momenta.
RESULTS DIFFER SLIGHTLY FROM THOSE PREVIOUSLY REPORTED IN J. M. BRUNET ET AL., NP B36, 45 (1972).
No description provided.
No description provided.
It is found in the reactions π ± p →( π ± π + π − )p, believed to be dominated by diffraction dissociation, that the d σ d t′ distributions show a “cross-over” effect at t ′ ≈ 0.15, similar to the effect observed in elastic scattering. This gives evidence for the interference of ( ϱ 0 , B 0 ,…)-exchanges with ( P , f 0 , …) -exchanges in pion diffraction dissociation reactions. No such evidence is found for baryon dissociation, π ± p → π ± (p π + π − ), at the same energy.
No description provided.
No description provided.
No description provided.
We have measured the differential cross section of the reaction π − p→ π − p in the range 0.92 ⩽ cos θ c.m. ⩽ 0.99 at 15 momenta between 0.875 and 1.580 GeV/ c . The results we report complete the available data; previous measurements of this reaction do not extend beyond cos θ c.m. =0.90. We compare our experimental results with dispersion relation predictions. A comparison of our results for B , the slope of the differential cross section, with earlier results shows many discrepancies.
No description provided.
No description provided.
No description provided.
Differential cross sections have been measured for nucleon-isobar production and elastic scattering in p−p interactions from 6.2 to 29.7 GeVc in the laboratory angle range 8<θsc<265 mrad. N*' s at 1236, 1410, 1500, 1690, and 2190 MeV were observed. Computer fits to the mass spectra under varying assumptions of resonance and background shapes show that conclusions on t and s dependence are only slightly affected despite typical variations in absolute normalization of ± 35%. Logarithmic t slopes in the small- |t| range are ∼15 (GeVc)−2 for the N*(1410), ∼5 (GeVc)−2 for the N*'s at 1500, 1690, and 2190 MeV, and ∼9 (GeVc)−2 for elastic scattering. Also for the small- |t| data, cross sections for N*'s at 1410, 1500, 1690, and 2190 MeV and for elastic scattering vary only slightly with Pinc consistent with the dominance of Pomeranchuk exchange and with diffraction dissociation. A fit of N*(1690) total cross sections to the form σ∝P−n gives n=0.34±0.06, while for elastic scattering n=0.20±0.05. For the N*(1690) the effective Regge trajectory has the slope αeff′(0)=0.38±0.17. When compared with N* production in π−, K−, and p¯ beams these data also agree with approximate factorization of the Pomeranchuk trajectory. N*(1236) cross sections are consistent with other measurements at similar momenta. For −t>1 (GeVc)−2, elastic scattering cross sections decrease approximately as Pinc−2, and they and N*(1500)− and N*(1690)− production cross sections have t slopes consistent with 1.6 (GeVc)−2.
No description provided.
No description provided.
No description provided.
Photoproduction is studied at 2.8 and 4.7 GeV using a linearly polarized monoenergetic photon beam in a hydrogen bubble chamber. We discuss the experimental procedure, the determination of channel cross sections, and the analysis of the channel γp→pπ+π−. A model-independent analysis of the ρ0-decay angular distribution allows us to measure nine independent density-matrix elements. From these we find that the reaction γp→pρ0 proceeds almost completely through natural parity exchange for squared momentum transfers |t|<1 GeV2 and that the ρ production mechanism is consistent with s-channel c.m. helicity conservation for |t|<0.4 GeV2. A cross section for the production of π+π− pairs in the s-channel c.m. helicity-conserving p-wave state is determined. The ρ mass shape is studied as a function of momentum transfer and is found to be inconsistent with a t-independent Ross-Stodolsky factor. Using a t-dependent parametrization of the ρ0 mass shape we derive a phenomenological ρ0 cross section. We compare our phenomenological ρ0 cross section with other experiments and find good agreement for 0.05<|t|<1 GeV2. We discuss the discrepancies in the various determinations of the forward differential cross section. We study models for ρ0 photoproduction and find that the Söding model best describes the data. Using the Söding model we determine a ρ0 cross section. We determine cross sections and nine density-matrix elements for γp→Δ++π−. The parity asymmetry for Δ++ production is incompatible with simple one-pion exchange. We compare Δ++ production with models.
FROM QUOTED TOPOLOGICAL CROSS SECTIONS. 1.44 GEV CROSS SECTION PUBLISHED PREVIOUSLY.
No description provided.
NO TMIN CORRECTION HAS BEEN MADE.
Proton-proton elastic scattering has been measured over the angular range 7 to 16 mrad at centre-of-mass energies of 31, 45 and 53 GeV using the CERN Intersecting Storage Rings. The results indicate that the diffraction peak has continued to shrink with increasing energy, but not as fast as suggested by the results at lower energies.
No description provided.
The differential cross-sections in the range of four momentum transfer squared from 0.003 to 0.120 (GeV c) 2 were measured at 30, 50 and 70 GeV by using a thin polyethilene target in the internal proton beam of the Serpukhov accelerator. The slope parameter, the ratio of the real to the imaginary part of the forward amplitude and the cross-section in the diffraction cone were measured.
No description provided.
ASSUMING UNIFORM SLOPE.
This work extends our previous investigations at the CERN Intersecting Storage Rings, with improved statistics at three different energies, wider angular range and a better control over systematic errors. Values for the (diffraction) shape parameter b are given.
No description provided.
No description provided.
No description provided.
Small angle elastic scattering events have been observed at the CERN Intersecting Storage Rings. Directions of both particles as well as the collision vertex are reconstructed with the help of four sets of spark chambers, two for each of the two arms. The elastic nature of the events is demonstrated by a collinearity requirement. We find values for the (diffraction) slope parameter in disagreement with the simple linear extrapolation of lower energy (Surpukov) data.
NUMBER OF EVENTS 87364.
NUMBER OF EVENTS 8305.
No description provided.
The measurements of the differential cross section of elastic p-p scattering in relative units were performed in the energy range of 12–70 GeV. The values of the slope parameter were obtained from this data. It was shown that the slope parameter of the differential p-p scattering is monotonously increasing when the proton energy rises in the range 12–70 GeV. We have obtained the slope Pomeranchuk's pole trajectory from this data: α′ p = 0.40 ± 0.09.
No description provided.