In this Letter, the first evidence of the ${}^4_{\bar{\Lambda}}\overline{\mathrm{He}}$ antihypernucleus is presented, along with the first measurement at the LHC of the production of (anti)hypernuclei with mass number $A=4$, specifically (anti)${}^4_{\Lambda}\mathrm{H}$ and (anti)${}^4_{\Lambda}\mathrm{He}$. In addition, the antiparticle-to-particle ratios for both hypernuclei (${}^4_{\bar{\Lambda}}\overline{\mathrm{H}}$ / ${}^4_{\Lambda}\mathrm{H}$~and ${}^4_{\bar{\Lambda}}\overline{\mathrm{He}}$ / ${}^4_{\Lambda}\mathrm{He}$) are shown, which are sensitive to the baryochemical potential of the strongly-interacting matter created in heavy-ion collisions. The results are obtained from a data sample of central Pb--Pb collisions, collected during the 2018 LHC data-taking at a center-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} = $ 5.02 TeV. The yields measured for the average of the charge-conjugated states are found to be $[0.78 \; \pm \; 0.19 \; \mathrm{(stat.)} \; \pm \; 0.17 \; \mathrm{(syst.)}] \times 10^{-6}$ for the (anti)${}^4_{\Lambda}\mathrm{H}$ and $[1.08 \; \pm \; 0.34 \; \mathrm{(stat.)} \; \pm \; 0.20 \; \mathrm{(syst.)}] \times 10^{-6}$ for the (anti)${}^4_{\Lambda}\mathrm{He}$, and the measured antiparticle-to-particle ratios are in agreement with unity. The presence of (anti)${}^4_{\Lambda}\mathrm{H}$ and (anti)${}^4_{\Lambda}\mathrm{He}$ excited states is expected to strongly enhance the production yield of these hypernuclei. The yield values exhibit a combined deviation of 3.3$\sigma$ from the theoretical ground-state-only expectation, while the inclusion of the excited states in the calculations leads to an agreement within 0.6$\sigma$ with the present measurements. Additionally, the measured (anti)${}^4_{\Lambda}\mathrm{H}$ and (anti)${}^4_{\Lambda}\mathrm{He}$ masses are compatible with the world-average values within the uncertainties.
We report on measurements of sequential $\Upsilon$ suppression in Au+Au collisions at $\sqrt{s_{_\mathrm{NN}}}$ = 200 GeV with the STAR detector at the Relativistic Heavy Ion Collider (RHIC) through both the dielectron and dimuon decay channels. In the 0-60% centrality class, the nuclear modification factors ($R_{\mathrm{AA}}$), which quantify the level of yield suppression in heavy-ion collisions compared to $p$+$p$ collisions, for $\Upsilon$(1S) and $\Upsilon$(2S) are $0.40 \pm 0.03~\textrm{(stat.)} \pm 0.03~\textrm{(sys.)} \pm 0.09~\textrm{(norm.)}$ and $0.26 \pm 0.08~\textrm{(stat.)} \pm 0.02~\textrm{(sys.)} \pm 0.06~\textrm{(norm.)}$, respectively, while the upper limit of the $\Upsilon$(3S) $R_{\mathrm{AA}}$ is 0.17 at a 95% confidence level. This provides experimental evidence that the $\Upsilon$(3S) is significantly more suppressed than the $\Upsilon$(1S) at RHIC. The level of suppression for $\Upsilon$(1S) is comparable to that observed at the much higher collision energy at the Large Hadron Collider. These results point to the creation of a medium at RHIC whose temperature is sufficiently high to strongly suppress excited $\Upsilon$ states.
We report multi-differential measurements of strange hadron production ranging from mid- to target-rapidity in Au+Au collisions at a center-of-momentum energy per nucleon pair of $\sqrt{s_{\rm NN}}=3$ GeV with the STAR experiment at RHIC. $K^0_S$ meson and $\Lambda$ hyperon yields are measured via their weak decay channels. Collision centrality and rapidity dependences of the transverse momentum spectra and particle ratios are presented. Particle mass and centrality dependence of the average transverse momenta of $\Lambda$ and $K^0_S$ are compared with other strange particles, providing evidence of the development of hadronic rescattering in such collisions. The 4$\pi$ yields of each of these strange hadrons show a consistent centrality dependence. Discussions on radial flow, the strange hadron production mechanism, and properties of the medium created in such collisions are presented together with results from hadronic transport and thermal model calculations.