$\Upsilon$ production and nuclear modification at forward rapidity in Pb-Pb collisions at $\mathbf{\sqrt{\textit{s}_{\textbf{NN}}}=5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 822 (2021) 136579, 2021.
Inspire Record 1829413 DOI 10.17182/hepdata.114190

The production of $\Upsilon$ mesons in Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}$ = 5 TeV is measured with the muon spectrometer of the ALICE detector at the LHC. The yields as well as the nuclear modification factors are determined in the forward rapidity region $2.5<y<4.0$, as a function of rapidity, transverse momentum and collision centrality. The results show that the production of the $\Upsilon$(1S) meson is suppressed by a factor of about three with respect to the production in proton-proton collisions. For the first time, a significant signal for the $\Upsilon$(2S) meson is observed at forward rapidity, indicating a suppression stronger by about a factor 2-3 with respect to the ground state. The measurements are compared with transport, hydrodynamic, comover and statistical hadronisation model calculations.

14 data tables

Rapidity-differential yield of $\Upsilon(1\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

Rapidity-differential yield of $\Upsilon(2\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

$p_{\mathrm{T}}$-differential yield of $\Upsilon(1\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

More…

${\rm f}_{0}(980)$ production in inelastic pp collisions at $\sqrt{s} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 846 (2023) 137644, 2023.
Inspire Record 2094796 DOI 10.17182/hepdata.136307

The measurement of the production of ${\rm f}_{0}(980)$ in inelastic pp collisions at $\sqrt{s} = 5.02$ TeV is presented. This is the first reported measurement of inclusive ${\rm f}_{0}(980)$ yield at LHC energies. The production is measured at midrapidity, $|y| < 0.5$, in a wide transverse momentum range, $0 < p_{\rm T} < 16$ GeV/$c$, by reconstructing the resonance in the ${\rm f}_{0}(980) \rightarrow \pi^{+}\pi^{-}$ hadronic decay channel using the ALICE detector. The $p_{\rm T}$-differential yields are compared to those of pions, protons and $\phi$ mesons as well as to predictions from the HERWIG 7.2 QCD-inspired Monte Carlo event generator and calculations from a coalescence model that uses the AMPT model as an input. The ratio of the $p_{\rm T}$-integrated yield of ${\rm f}_{0}(980)$ relative to pions is compared to measurements in ${\rm e}^{+}{\rm e}^{-}$ and pp collisions at lower energies and predictions from statistical hadronisation models and HERWIG 7.2. A mild collision energy dependence of the ${\rm f}_{0}(980)$ to pion production is observed in pp collisions from SPS to LHC energies. All considered models underpredict the $p_{\rm T}$-integrated $2{\rm f}_{0}(980)/(\pi^{+}+\pi^{-})$ ratio. The prediction from the canonical statistical hadronisation model assuming a zero total strangeness content of ${\rm f}_{0}(980)$ is consistent with the data within 1.9$\sigma$ and is the closest to the data. The results provide an essential reference for future measurements of the particle yield and nuclear modification in p$-$Pb and Pb$-$Pb collisions, which have been proposed to be instrumental to probe the elusive nature and quark composition of the ${\rm f}_{0}(980)$ scalar meson.

4 data tables

$p_{\rm T}$-differential yields of $f_{0}(980)$ at midrapidity in the inelastic pp collisions at $\sqrt(s)$ = 5.02 TeV. The uncertainty 'syst' indicates the total systematic uncertainty and 'stat' indicates the statistical uncertainty. The branching ratio correction amounts to BR = (46 $\pm$ 6)% [ Phys. Rev. Lett. 111 no. 6, (2013) 062001] assuming dominance of $\pi\pi$ and KK channel has been applied to the $p_{\rm T}$-differential yields of $f_{0}(980)$. The normalisation and branching ratio relative uncertainties on the yields are independent of $p_{\rm{T}}$ and amount to 2.5% and 13%, respectively and therefore not included in the $p_{\rm T}$-differential yields of $f_{0}(980)$.

$p_{\rm T}$-integrated yield of $f_{0}(980)$, dN/dy at midrapidity as a function of $\langle {\rm d}N_{\rm ch}/{\rm d}\eta \rangle$. The uncertainty 'syst' indicates the total systematic uncertainty on the measurement. The branching ratio correction amounts to BR = (46 $\pm$ 6)% [ Phys. Rev. Lett. 111 no. 6, (2013) 062001] assuming dominance of $\pi\pi$ and KK channel has been applied to the $p_{\rm T}$-differential yields of $f_{0}(980)$. Here, the branching ratio relative uncertainty (13%) for $f_{0}(980)$ is not included.

mean-$p_{\rm{T}}$ of $f_{0}(980)$, (<$p_{\rm{T}}$>) at midrapidity as a function of $\langle {\rm d}N_{\rm ch}/{\rm d}\eta \rangle$. The uncertainty 'syst' indicates the total systematic uncertainty on the measurement.

More…

A Comparison of jet production rates on the Z0 resonance to perturbative QCD

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 247 (1990) 167-176, 1990.
Inspire Record 297698 DOI 10.17182/hepdata.29653

The production rates for 2-, 3-, 4- and 5-jet hadronic final states have been measured with the DELPHI detector at the e + e − storage ring LEP at centre of mass energies around 91.5 GeV. Fully corrected data are compared to O(α 2 s ) QCD matrix element calculations and the QCD scale parameter Λ MS is determined for different parametrizations of the renormalization scale ω 2 . Including all uncertainties our result is α s ( M 2 Z )=0.114±0.003[stat.]±0.004[syst.]±0.012[theor.].

2 data tables

Corrected jet rates.

Second systematic error is theoretical.


A Comparison of the Energy Distributions of Hadrons Produced in Deep Inelastic Scattering of Muons on Hydrogen and Deuterium Targets

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Z.Phys.C 31 (1986) 175, 1986.
Inspire Record 227131 DOI 10.17182/hepdata.1817

The energy distribution of inclusive hadrons produced by 280 GeV muons on hydrogen and deuterium targets are compared. The sum of the scaled energy distributions of the positive and negative hadrons is found to be the same for the two targets. The difference of these distributions is observed to factorise inx andz and thez-dependence is found to be independent of the target type and have a form (1−z)2.1±0.2. The net charge of the hadronic jet is positive at highx even in the case when the scattering takes place on the neutron. These results are in good agreement with the expectations of the Quark Parton Model.

53 data tables

No description provided.

No description provided.

No description provided.

More…

A MEASUREMENT OF THE DIFFERENCE BETWEEN THE SINGLE NUCLEON CROSS-SECTIONS FOR j / psi MUOPRODUCTION IN IRON AND IN H-2, D-2 TARGETS

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 152 (1985) 433-438, 1985.
Inspire Record 207459 DOI 10.17182/hepdata.30432

The cross sections for J ψ production have been measured in interactions of 280 GeV μ + on hydrogen and deuterium (H, D) and also in interactions of 250 GeV μ + on iron. The single-nucleon cross sections in iron are found to be larger than those in H, D. The mean ratio of the iron to H, D photoproduction cross sections in the range 60 < v < 200 GeV is 1.45 ±0.12 (statistical) ±0.22 (systematic error). Within the framework of the photon-gluon fusion model, this indicates that the gluon density per nucleon is ∼45% larger in iron than in H, D in the range 0.026 < x < 0.085, on a mass scale Q 2 eff ∼M 2 J ψ .

3 data tables

First table is from combined H and DEUT data at 280 Gev. Second table is from FE data at 250 Gev.

First table is from combined H and DEUT data at 280 Gev. Second table is from FE data at 250 Gev.

THIS TABLE IS THE RATIO OF THE EFFECTIVE GLUON DISTRIBUTIONS IN IRON AND HYDROGEN(DEUTERIUM) ASSUMING THAT PHOTON-GLUON FUSION IS THE RELEVANT MECHANISM FOR J/PSI PRODUCTION.


A Measurement of sigma(tot) (gamma p) at s**(1/2) = 210-GeV

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 293 (1992) 465-477, 1992.
Inspire Record 339275 DOI 10.17182/hepdata.45171

The total photoproduction cross section is determined from a measurement of electroproduction with the ZEUS detector at HERA. The Q 2 values of the virtual photons are in the range 10 −7 < Q 2 <2×10 −2 GeV 2 . The γp total cross section in the γp centre of mass energy range 186–233 GeV is 154 ± 16 (stat.) ± 32 (syst.) μ b.

1 data table

Scattered electron in range 10 to 16 GeV.


A Measurement of the K+ K- / pi+ pi- ratio from anti-p annihilation in deuterium and hydrogen gas

Adamo, A. ; Agnello, M. ; Balestra, F. ; et al.
Phys.Lett.B 284 (1992) 448-452, 1992.
Inspire Record 339776 DOI 10.17182/hepdata.29172

We have measured the K + K - /π + π - ratio R from p annihilations in gaseous D 2 and H 2 at atmospheric pressure. The measurement was performed with the OBELIX spectrometer. From the measured value in gaseous D 2 (0.27±0.02) we infer a P wave contribution to p −p annihilation in D 2 of (18±7)%.

1 data table

Two different triggers were used.


A New measurement of the Pontecorvo reaction anti-p + d ---> pi- + p with the OBELIX spectrometer at LEAR

The OBELIX collaboration Ableev, V.G. ; Adamo, A. ; Agnello, M. ; et al.
Nucl.Phys.A 562 (1993) 617-643, 1993.
Inspire Record 364197 DOI 10.17182/hepdata.3849

Antinucleon-nucleus annihilations into two-body final states containing only one or no meson are unusual annihilations (Pontecorvo reactions), practically unexplored experimentally, with the exception of the channel p d → π − p , for which only two low-statistics measurements exist. Their physical interest lies in the possibility of exploring small-distance nuclear dynamics, in which an important role can be played by non-nucleonic degrees of freedom. A new measurement of the p d → π − p reaction rate at rest, performed with the OBELIX spectrometer at LEAR, with the best statistics up to now and a careful evaluation of systematic effects is reported, together with a critical analysis of the existing theoretical models. The measured branching ratio, which confirms the previous results, can represent a reference point for the studies in the field.

1 data table

No description provided.


A Precise Measurement of the $Z$ Resonance Parameters Through Its Hadronic Decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 241 (1990) 435-448, 1990.
Inspire Record 295501 DOI 10.17182/hepdata.29722

A measurement of the cross section for e + e - → hadrons using 11 000 hadronic decays of the Z boson at ten different center-of-mass energies is presented. A three-parameter fit gives the following values for the Z mass M z , the total width Γ z , the product of the electronic and hadronic partial widths Γ e Γ h , and the unfolded pole cross section σ 0 : M Z =91.171±0.030(stat)±0.030 (beam) GeV, Γ Z =2.511±0.065 GeV, Γ e Γ h =0.148±0.006 (stat.)±0.004 (syst.) GeV 2 , σ 0 =41.6±0.7(stat.)±1.1 (syst.) nb,

1 data table

No description provided.


A Search for excited fermions in electron - proton collisions at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 65 (1995) 627-648, 1995.
Inspire Record 378836 DOI 10.17182/hepdata.45049

A search for excited states of the standard model fermions was performed using the ZEUS detector at the HERA electron-proton collider, operating at a centre of mass energy of 296 GeV. In a sample corresponding to an integrated luminosity of 0.55 pb−1, no evidence was found for any resonant state decaying into final states composed of a fermion and a gauge boson. Limits on the coupling strength times branching ratio of excited fermions are presented for masses between 50 GeV and 250 GeV, extending previous search regions significantly.

1 data table

The cross sections times branching ratio.