With the STAR experiment at the BNL Relativisic Heavy Ion Collider, we characterize $\sqrt{s_\mathrm{NN}}$ = 200 GeV p+Au collisions by event activity (EA) measured within the pseudorapidity range $eta$$in$ [-5, -3.4] in the Au-going direction and report correlations between this EA and hard- and soft- scale particle production at midrapidity ($\eta$$\in$ [-1, 1]). At the soft scale, charged particle production in low-EA p+Au collisions is comparable to that in p+p collisions and increases monotonically with increasing EA. At the hard scale, we report measurements of high transverse momentum (pT) jets in events of different EAs. In contrast with the soft particle production, high-pT particle production and EA are found to be inversely related. To investigate whether this is a signal of jet quenching in high-EA events, we also report ratios of pT imbalance and azimuthal separation of dijets in high- and low-EA events. Within our measurement precision, no significant differences are observed, disfavoring the presence of jet quenching in the highest 30% EA p+Au collisions at $\sqrt{s_\mathrm{NN}}$ = 200 GeV.
Distributions of Event Activity (as measured by the BBC) from MB and HT events with the latter satisfying an offline trigger of $E_\mathrm{T}^\mathrm{trig}>4 \mathrm{GeV}$.
Density of charged particles with $p_\mathrm{T}>0.2$ GeV/$c$ and $|\eta|\le0.9$ in ten ranges of EA for MB events and HT events selected with several offline trigger values.
Charged particle density as a function of EA, UE $\eta$, and $p_\mathrm{T,jet}^\mathrm{lead}$ for HT ($E_\mathrm{T}^\mathrm{trig}>4$ GeV) events with $p_\mathrm{T,jet}^\mathrm{raw,lead}>4~\mathrm{GeV}/c$.
Single particles and jets in deeply inelastic scattering at low x are measured with the H1 detector in the region away from the current jet and towards the proton remnant, known as the forward region. Hadronic final state measurements in this region are expected to be particularly sensitive to QCD evolution effects. Jet cross-sections are presented as a function of Bjorken-x for forward jets produced with a polar angle to the proton direction, theta, in the range 7 < theta < 20 degrees. Azimuthal correlations are studied between the forward jet and the scattered lepton. Charged and neutral single particle production in the forward region are measured as a function of Bjorken-x, in the range 5 < theta < 25 degrees, for particle transverse momenta larger than 1 GeV. QCD based Monte Carlo predictions and analytical calculations based on BFKL, CCFM and DGLAP evolution are compared to the data. Predictions based on the DGLAP approach fail to describe the data, except for those which allow for a resolved photon contribution.
Forward Jet cross section. Axis error includes +- 7/7 contribution (Dependence of the model used to correct the data).
Forward Di-jet cross section. Axis error includes +- 7/7 contribution (Dependence of the model used to correct the data).
Data from Figure 3a on charged particle production