The NA62 experiment at CERN has the capability to collect data in a beam-dump mode, where 400 GeV protons are dumped on an absorber. In this configuration, New Physics particles, including dark photons, dark scalars, and axion-like particles, may be produced in the absorber and decay in the instrumented volume beginning approximately 80 m downstream of the dump. A search for these particles decaying in flight to hadronic final states is reported, based on an analysis of a sample of $1.4 \times 10^{17}$ protons on dump collected in 2021. No evidence of a New Physics signal is observed, excluding new regions of parameter spaces of multiple models.
90% CL upper limit in dark photon coupling vs mass parameter space for combined di-lepton and hadronic final states, using bremsstrahlung production without the time-like form factor.
90% CL upper limit in dark photon coupling vs mass parameter space for combined di-lepton and hadronic final states, including mixing and bremsstrahlung production with a time-like form factor.
90% CL upper limit in dark scalar coupling vs mass parameter space for combined di-lepton and hadronic final states.
A search for a dark photon, a new light neutral particle, which decays promptly into collimated pairs of electrons or muons is presented. The search targets dark photons resulting from the exotic decay of the Standard Model Higgs boson, assuming its production via the dominant gluon-gluon fusion mode. The analysis is based on 140 fb$^{-1}$ of data collected with the ATLAS detector at the Large Hadron Collider from proton-proton collisions at a center-of-mass energy of 13 TeV. Events with collimated pairs of electrons or muons are analysed and background contributions are estimated using data-driven techniques. No significant excess in the data above the Standard Model background is observed. Upper limits are set at 95% confidence level on the branching ratio of the Higgs boson decay into dark photons between 0.001% and 5%, depending on the assumed dark photon mass and signal model.
Simulated distributions of the number of μLJ candidates for a selection of γ<sub>d</sub> mass values. The shape and normalisation of the distributions are extracted from the parameterisation obtained for μLJ-μLJ SR, using the FRVZ model and assuming a branching ratio of the Higgs boson decay to dark photons of 5%.
The background-only fit (with its components) of the μLJ mass distributions for the μLJ–μLJ region, where both the μLJs are included. A signal distribution for a dark photon mass of 1 GeV is overlaid, assuming the HAHM model and a branching ratio of the Higgs boson to dark photons of 0.5%. The points reported in the table correspond to the μLJ mass distribution in data. The background pdf is defined in Eq. 1 in the paper. The corresponding fitted parameters in the Signal Region are N<sub>exp1</sub>=54, N<sub>exp2</sub>=137, τ<sub>1</sub>=3.2 GeV, τ<sub>2</sub>=1.3 GeV, N<sub>J/ψ</sub>=34. The parameter σ<sub>J/ψ</sub> is fixed from the Control Region fit to 0.033 GeV.
The background-only fit (with its components) of the μLJ mass distributions for the eLJ–μLJ region. A signal distribution for a dark photon mass of 1 GeV is overlaid, assuming the HAHM model and a branching ratio of the Higgs boson to dark photons of 0.5%. The points reported in the table correspond to the μLJ mass distribution in data. The background pdf is defined in Eq. 1 in the paper. The corresponding fitted parameters in the Signal Region are N<sub>exp1</sub>=168, N<sub>exp2</sub>=26, τ<sub>1</sub>=0.50 GeV, τ<sub>2</sub>=0.34 GeV, N<sub>J/ψ</sub>=26. The parameter σ<sub>J/ψ</sub> is fixed from the Control Region fit to 0.033 GeV.
The FASER experiment at the LHC is designed to search for light, weakly-interacting particles produced in proton-proton collisions at the ATLAS interaction point that travel in the far-forward direction. The first results from a search for dark photons decaying to an electron-positron pair, using a dataset corresponding to an integrated luminosity of 27.0 fb$^{-1}$ collected at center-of-mass energy $\sqrt{s} = 13.6$ TeV in 2022 in LHC Run 3, are presented. No events are seen in an almost background-free analysis, yielding world-leading constraints on dark photons with couplings $\epsilon \sim 2 \times 10^{-5} - 1 \times 10^{-4}$ and masses $\sim$ 17 MeV - 70 MeV. The analysis is also used to probe the parameter space of a massive gauge boson from a U(1)$_{B-L}$ model, with couplings $g_{B-L} \sim 5 \times 10^{-6} - 2 \times 10^{-5}$ and masses $\sim$ 15 MeV - 40 MeV excluded for the first time.
90% confidence level observed exclusion contour in the dark photon parameter space.
90% confidence level observed exclusion contour in the dark photon parameter space.
90% confidence level expected exclusion contour in the B-L gauge boson parameter space.
A search for dark matter in events with a displaced nonresonant muon pair and missing transverse momentum is presented. The analysis is performed using an integrated luminosity of 138 fb$^{-1}$ of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV produced by the LHC in 2016-2018. No significant excess over the predicted backgrounds is observed. Upper limits are set on the product of the inelastic dark matter production cross section $\sigma$(pp $\to$ A' $\to$$\chi_1$$\chi_2$) and the decay branching fraction $\mathcal{B}$($\chi_2$$\to$$\chi_1 \mu^+ \mu^-$), where A' is a dark photon and $\chi_1$ and $\chi_2$ are states in the dark sector with near mass degeneracy. This is the first dedicated collider search for inelastic dark matter.
Definition of ABCD bins and yields in data, per match category. The predicted yield in the bin with the smallest backgrounds (bin D) is extracted from the simultaneous four-bin fit by assuming zero signal, which corresponds to $(\text{Obs. B} \times \text{Obs. C}) / (\text{Obs. A})$ in this limit.
Systematic uncertainties in the analysis. The jet uncertainties are larger in 2017 because of noise issues with the ECAL endcap. The tracking inefficiency in 2016 is caused by the unexpected saturation of photodiode signals in the tracker.
Simulated muon reconstruction efficiency of standard (blue squares) and displaced (red circles) reconstruction algorithms as a function of transverse vertex displacement $v_{xy}$. The two dashed vertical gray lines denote the ends of the fiducial tracker and muon detector regions, respectively.
A search for light long-lived neutral particles with masses in the $O$(MeV-GeV) range is presented. The analysis targets the production of long-lived dark photons in the decay of a Higgs boson produced via gluon-gluon fusion or in association with a $W$ boson. Events that contain displaced collimated Standard Model fermions reconstructed in the calorimeter or muon spectrometer are selected in 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV $pp$ collision data collected by the ATLAS detector at the LHC. Background estimates for contributions from Standard Model processes and instrumental effects are extracted from data. The observed event yields are consistent with the expected background. Exclusion limits are reported on the production cross-section times branching fraction as a function of the mean proper decay length $c\tau$ of the dark photon, or as a function of the dark-photon mass and kinetic mixing parameter that quantifies the coupling between the Standard Model and potential hidden (dark) sectors. A Higgs boson branching fraction above 1% is excluded at 95% CL for a Higgs boson decaying into two dark photons for dark-photon mean proper decay lengths between 10 mm and 250 mm and dark photons with masses between 0.4 GeV and 2 GeV.
The reconstruction efficiency for μDPJ objects satisfying the cosmic-ray tagger selection produced in the decay of a γ<sub>d</sub> into a muon pair. The reconstruction efficiency is shown for γ<sub>d</sub> with 0<|η|<1 as a function of the transverse decay length L<sub>xy</sub>.
The reconstruction efficiency for μDPJ objects satisfying the cosmic-ray tagger selection produced in the decay of a γ<sub>d</sub> into a muon pair. The reconstruction efficiency is shown for γ<sub>d</sub> with 0<|η|<1 as a function of the γ<sub>d</sub> transverse momentum in events where the γ<sub>d</sub> L<sub>xy</sub> is below 6 m.
The reconstruction efficiency for caloDPJs produced by the decay of γ<sub>d</sub> into e<sup>+</sup>e<sup>-</sup> or qq̄. The reconstruction efficiency is shown for γ<sub>d</sub> with 0<|η|<1.1 as a function of the transverse decay length L<sub>xy</sub>. The efficiency drop at 2.5 m corresponds to the end of the first layer of the HCAL.