Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
Inclusive momentum spectra and multiplicity distributions of charged particles measured with BESII detector at center of mass energies of 2.2,2.6,3.0,3.2,4.6 and 4.8 GeV are presented. Values of the second binomial moment, $R_2$, obtained from the multiplicity distributions are reported. These results are compared with both experimental data from high energy $e^+e^-$, $ep$ and $p\bar{p}$ experiments and QCD calculations.
We report final results of a series of measurements of continuum dimuon production in proton-nucleus collisions at Fermilab. New results with 6 times more statistics are included. A full description of the apparatus and methods used in the analysis of this series of measurements is given. The sea quark distribution of the nucleon is determined within the context of Drell-Yan and quantum-chromodynamic description of dilepton production in hadron collisions.
Experimental results on the production of dimuons by 800-GeV protons incident on a copper target are presented. The results include measurements of both the continuum of dimuons and the dimuon decays of the three lowest-mass ϒ S states. A description of the apparatus, data acquisition, and analysis techniques is included. A comparison of the results with data taken at lower incident energies indicates a scaling behavior of the continuum dimuon yields.
The hadronic final states observed with the ALEPH detector at LEP in ${\rm e}^ + {\rm e}^-$ annihilation
Inclusive momentum spectra are measured for all charged particles and for each of $\pi~{\pm}$, $K~{\pm}$, $K~0/\overline{K~0}$, and $p/\overline{p}$ in hadronic events produced via $e~+e~-$ annihilation at $\sqrt{s}$=58GeV . The measured spectra are compared with QCD predictions based on the modified leading log approximation(MLLA). The MLLA model reproduces the measured spectra well. The energy dependence of the peak positions of the spectra is studied by comparing the measurements with those at other energies. The energy dependence is also well described by the MLLA model.
The cross section for the inclusive production of isolated photons has been measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV and have pseudorapidity |eta|<0.9. The cross section is compared with the results from two next-to-leading order perturbative QCD calculations. The theoretical predictions agree with the measurement within uncertainties.
New results on the production of charged pions in p+p interactions are presented. The data come from a sample of 4.8 million inelastic events obtained with the NA49 detector at the CERN SPS at 158 GeV/c beam momentum. Pions are identified by energy loss measurement in a large TPC tracking system which covers a major fraction of the production phase space. Inclusive invariant cross sections are given on a grid of nearly 300 bins per charge over intervals from 0 to 2 GeV/c in transverse momentum and from 0 to 0.85 in Feynman x. The results are compared to existing data in overlapping energy ranges.
We report on measurements of the inclusive jet production cross section as a function of the jet transverse momentum in pp-bar collisions at sqrt{s} = 1.96 TeV}, using the k_T algorithm and a data sample corresponding to 1.0 fb^-1 collected with the Collider Detector at Fermilab in Run II. The measurements are carried out in five different jet rapidity regions with |yjet| < 2.1 and transverse momentum in the range 54 < \ptjet < 700 GeV/c. Next-to-leading order perturbative QCD predictions are in good agreement with the measured cross sections.
We present a measurement of the inclusive jet cross section in ppbar interactions at sqrt{s}=1.96 TeV using 385 pb^{-1} of data collected with the CDF II detector at the Fermilab Tevatron. The results are obtained using an improved cone-based jet algorithm (Midpoint). The data cover the jet transverse momentum range from 61 to 620 GeV/c, extending the reach by almost 150 GeV/c compared with previous measurements at the Tevatron. The results are in good agreement with next-to-leading order perturbative QCD predictions using the CTEQ6.1M parton distribution functions.