The reactions π + p giving π 0 Δ ++ (1236), η (549) Δ ++ (1236) and η ′(958) Δ ++ (1236) are studied at 16 GeV/ c . Cross sections, differential cross sections and Δ ++ (1236) spin density matrix elements are presented. The π 0 Δ ++ (1236) differential cross section d σ d t′ indicates a dip towards t ′ = 0 and has a minimum at t ′ ≅ 0.6 GeV 2 . The Δ ++ (1236) spin density matrix elements are consistent with the predictions of the Stodolsky-Sakurai model, except perhaps near the forward direction. For ηΔ ++ (1236), the differential cross section d σ d t′ turns over in the forward direction and presents no further structure. SU(3) sum rules are tested and found to be approximately satisfied. The data agree with factorization of ϱ exchange. The effective A 2 trajectory is calculated and found to be consistent with that reported from the reaction π − p → η n.
No description provided.
NORMALIZED TO THE TOTAL CROSS SECTION OF 49 MUB.
No description provided.
Results are presented on the quasi-two body reactions π + p → Δ ++ π 0 and π + p → Δ s ++ η and 5.45 GeV/ c . Differential cross sections and Δ ++ spin density matrix elements in the t -channel and s -channel helicity systems are presented and compared with a Regge exchange model and the dual absorptive model.
LINEAR BACKGROUND ASSUMED.
VALUE OBTAINED FROM 4-PRONG EVENTS USED, I. J. BLOODWORTH ET AL., NP B39, 525 (1972).
NORMALIZED TO QUOTED TOTAL CROSS SECTION. NO BACKGROUND SUBTRACTION.
The reactions of positive pions with protons yielding four charged particles and one or more neutrals have been studied, especially the reaction π+p→Δ++ω0→pπ+π+π−π0. The results presented in this paper were obtained from a 100 000-picture exposure of the Argonne-MURA 30-in. liquid hydrogen bubble chamber, with a beam of incident pions of 4.09−GeVc momentum. Comparisons have been made with corresponding results of other experiments at various incident beam momenta, and with the predictions of some theoretical models of the π+p interaction.
INCLUDING CORRECTIONS FOR BACKGROUND.
No description provided.
No description provided.
New data for the reaction π+p→η0Δ++ are presented at 11 momenta between 1.28 and 2.67 GeV/c. Existing data at higher momenta are included in an analysis of the reaction in terms of A2 exchange. An effective trajectory parametrization of the data above 2 GeV/c is shown to describe adequately those data, although it yields an effective trajectory steeper than expected from ρ−A2 exchange degeneracy. An existing Regge-pole model is refitted to the data above 2 GeV/c with generally satisfactory results. Both the effective trajectory parametrization and the Regge model are extrapolated to the lower-momenta data and shown to give remarkably good agreement with the data. Evidence is presented against a dominant contribution to the lower-momenta data from s-channel resonances.
BACKGROUND SUBTRACTED ONLY ABOVE 1.67 GEV/C.
NOT CORRECTED FOR BACKGROUND - MINIMAL DISTORTION EXPECTED. NORMALIZED TO INTEGRATED CROSS SECTION.
ISOTROPIC FIT JACKSON FRAME DENSITY MATRIX ELEMENTS.
The production of η and X° mesons has been investigated in four and six prong events from π + p interactions at 5.45 GeV/ c . The cross sections for the quasi two body states Δ ++ η and Δ ++ X° were found to be 0.076±0.013 mb and 0.017±0.006 mb respectively. A comparison of the matrix elements for these reactions yields an η−X° mixing angle different from that predicted by the quadratic mass formula by about 20°, but within 6° of the linear mass formula result.
No description provided.
The non-strange four-prong events of π + p interactions at 3.5 GeV/ c are studied. Cross sections are calculated for all resonance productions in the channels π + p → p π + π + π − ( σ T = 3.18 ± 0.13 mb) and π + p → p π + π + π − π o ( σ T = 4.03 ± 0.16 mb). The dominant two body reactions Δ ++ ϱ o and Δ ++ ω o are investigated in detail, and production and decay distributions are presented as well as joint decay density matrix elements and joint correlation terms. The Δ ++ ϱ o reaction is compared to predictions of OPE with absorption and the Δ ++ ω o is compared to rho-exchange with sharp cutoff.
FOUR-PRONG, NON-STRANGE CROSS SECTIONS. SYSTEMATIC ERROR INCLUDED.
BREIT-WIGNER RESONANCE FITS, ALLOWING FOR PHASE SPACE AND RELEVANT REFLECTIONS, TO <P PI+ PI+ PI-> FINAL STATE.
BREIT-WIGNER RESONANCE FITS, ALLOWING FOR PHASE SPACE AND RELEVANT REFLECTIONS, TO <P PI+ PI+ PI- PI0> FINAL STATE.
In a study of the production mechanism of quasi-two-body final states at the five incident π+ momenta 2.95, 3.2, 3.5, 3.75, and 4.08 GeV/c, approximately 40 000 events with four outgoing charged particles were investigated. The cross sections for the processes π+p→N*++ρ, π+p→N*++ω, π+p→N*++η, and π+p→N*++f have been measured as a function of the pion energy. The differential cross sections and the decay density-matrix elements are discussed in terms of one-meson-exchange models [with absorption (OPEA) and with form factor (OPEW)] and Regge models. For the N*++ρ and the N*++ω reactions, the joint-decay matrix elements are calculated. The formation of N*(2850) in the direct channel is also investigated.
No description provided.
No description provided.
No description provided.
New results are presented on the reaction π+p→η0Δ++ between 1.2 and 2.67 GeVc. The data above 2 GeVc, when combined with some existing data, give evidence for a dip in the t distribution near t=−1.5 (GeVc).2 This dip, and other features of the data, are adequately described by an A2 Regge-pole model. The effective A2 trajectory is calculated and found to disagree with that obtained from the reaction π−p→η0n.
No description provided.