The polarization of tau leptons in the reaction e+ e- --> tau+ tau- has been measured using a e+e- collider, TRISTAN, at the center-of-mass energy of 58 GeV. From the kinematical distributions of daughter particles in tau --> e nu nu-bar, mu nu nu-bar, rho nu or pi(K) nu decays, the average polarization of tau- and its forward-backward asymmetry have been evaluated to be 0.012 +- 0.058 and 0.029 +- 0.057, respectively.
Earlier measurements at LEP of isolated hard photons in hadronic Z decays, attributed to radiation from primary quark pairs, have been extended in the ALEPH experiment to include hard photon productioninside hadron jets. Events are selected where all particles combine democratically to form hadron jets, one of which contains a photon with a fractional energyz≥0.7. After statistical subtraction of non-prompt photons, the quark-to-photon fragmentation function,D(z), is extracted directly from the measured 2-jet rate. By taking into account the perturbative contributions toD(z) obtained from anO(ααs) QCD calculation, the unknown non-perturbative component ofD(z) is then determined at highz. Provided due account is taken of hadronization effects nearz=1, a good description of the other event topologies is then found.
Using the MD-1 detector at the VEPP-4e+e− strorage ring we have measured the inclusive Λ and370-1 production rates in direct Γ(1S) decays
The total cross section of the processe+e− →hadrons has been measured in the center-of-mass energy range between 7.25 and 10.34 GeV using the MD-1 detector at the VEPP-4 collider. The ratioR=σ(e+e− →hadrons)/σ(e+e− →μ+μ−) was found to be constant in this energy range with the average value of 3.58±0.02±0.14.
The total cross section fore+e− annihilation into hadrons for center of mass energies from 9.4 to 9.5 GeV has been measured with the nonmagnetic DESY-Heidelberg detector at DORIS. A value ofR=σhad/σµµ=3.8±0.7 for the continuum region around the Υ (9.46) resonance has been determined. The ratioΓeeΓhad/Γtot of electronic, hadronic and total widths has been reevaluated to be (1.00±0.23) keV for the Υ resonance and (0.37±0.16) keV for the Υ′. In addition, a search for directly produced pohotons from Υ decays of the type Υ→γ+gluon+gluon has been performed. The Υ decay into muon pairs has also been searched for.
A study of the fragmentation properties of charm and bottom quarks intoD mesons is presented. From 263 700Z0 hadronic decays collected in 1991 with the DELPHI detector at the LEP collider,D0,D+ andD*+ are reconstructed in the modesK−π+,K−π+K+ andD0π+ followed byD0→K−π+, respectively. The fractional decay widths\(\Gamma {{(Z^0\to {D \mathord{\left/ {\vphantom {D {\bar D}}} \right. \kern-\nulldelimiterspace} {\bar D}}X)} \mathord{\left/ {\vphantom {{(Z^0\to {D \mathord{\left/ {\vphantom {D {\bar D}}} \right. \kern-\nulldelimiterspace} {\bar D}}X)} {\Gamma _h }}} \right. \kern-\nulldelimiterspace} {\Gamma _h }}\) are determined, and first results are presented for the production ofD mesons from\(c\bar c\) and\(b\bar b\) events separately. The average energy fraction ofD*± in charm quark fragmentation is found to be 〈XE(D*)〉c=0.487±0.015 (stat)±0.005 (sys.). Assuming that the fraction ofDs and charm-baryons produced at LEP is similar to that around 10 GeV, theZ0 partial width into charm quark pairs is determined to beΓc/Γh=0.187±0.031 (stat)±0.023 (sys). The probability for ab quark to fragment into\(\bar B_s \) orb-baryons is inferred to be 0.268±0.094 (stat)±0.100 (sys) from the measured probability that it fragments into a\(\bar B^0 \) orB−.
Using the detector ARGUS at thee+e− storage ring DORIS II, we have investigated inclusive momentum spectra of charged pions, kaons, and protons from decays of the υ(4S) meson. The kaon spectra have been measured in two independent ways, by coherently exploiting the detector's particle identification capabilities, and by detecting decays in-flight. The extracted mean multiplicities for charged hadrons are 7.17±0.05±0.14 pions, 1.56±0.03±0.05 kaons and 0.110±0.010±0.007 protons per υ(4S) decay, where pions and protons fromKso and Δ decays have been subtracted.
The multiplicity distributions of charged particles in full phase space and in restricted rapidity intervals for events with a fixed number of jets measured by the DELPHI detector are presented. The data are well reproduced by the Lund Parton Shower model and can also be well described by fitted negative binomial distributions. The properties of these distributions in terms of the clan model are discussed. In symmetric 3-jet events the candidate gluon jet is found not to be significantly different in average multiplicity than the mean of the other two jets, thus supporting previous results of the HRS and OPAL experiments. Similar results hold for events generated according to the LUND PS and to the HERWIG models, when the jets are defined by the JADE jet finding algorithm. The method seems to be insensitive for measuring the color charge ratio between gluons and quarks.
Using the CELLO detector, we have measured cross sections for the processγγ→π+π− in the mass range 0.75–1.9 GeV/c2. A partial wave fit to the data indicates the presence of a sizeableS-wave amplitude with signs of resonant behaviour. Values for the γγ width of thef2(1270) are given, showing the model-dependence of this quantity. At higher dipion masses, the model of Brodsky and Lepage is found to give an order of magnitude description of the data.
The cross sections fore+e−→π+π−π0 ande+e−→ωπ+π− have been measured in the 1.35 ≦\(\sqrt s \) ≦2.4 GeV range from 1900 nb−1 collected by DM2 at DCI. The second process proceeds via a resonant state at ≈- 1660 MeV/c2, ≈- 280 MeV/c2 wide. The first one is larger than a VDM extrapolation from the ω-ϕ peaks and, although does not show any clear structure, is compatible with the presence of the above resonance.