We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
N-Jet rates from the OPAL collaboration at c.m. energy 183 GeV. Jets defined using the DURHAM alogrithm.
Cross sections and decay distribution moments are presented for the reaction p p → Δ ++ Δ ++ at 3.6 GeV/ c , and compared with previously published data at 9.1 and 12 GeV/ c . With the aid of the quark model, we have isolated the natural and unnatural parity exchange contributions and shown them to accord with expectations based on simple Regge-pole exchanges.
A comparative study is made for12C-Em and16O-Em reactions, according to the soft-sphere model using measured mean free path and hence cross-sections together with other collected data. The fragmentation of projectile intoZ-fragments was studied in all interactions of16O-emulsion. The interactions depending on the impact parameter (which is characteristic of the target component) are investigated.
VALUES OF SIG WERE ESTIMATED USING FOLLOWING EQUATION: SIG=1/NL, WHERE N IS EFFECTIVE CONCENTRATION OF NUCLEI IN AN EMULSION OBTAINED 3.78*10**22 ATOMS/CM**3, AND L IS MEAN FREE PATH: 14.43 +-0.33 CM FOR C12 AND 12.8 +-0.33 CM FOR O16.
The differential cross section for the charge-exchange reaction K−p→K¯0n has been measured at 22 incident momenta between 515 and 956 MeV/c. Experimental results and Legendre-polynomial fits to the data are presented.
No description provided.
Results are presented of measurements of the polarisation parameter for the reaction π−p→π°n : π°→γγ at 22 incident momenta in the resonance region. These results are generally in agreement with those of previous measurements and in qualitative agreement with predictions of phase shift analyses.
No description provided.
Measurements of energy weighted angular correlations in electron positron annihilations at c.m. energies of 22 GeV and 34 GeV are presented.
The production of a $W$ boson decaying to $e\nu$ or $\mu\nu$ in association with a $W$ or $Z$ boson decaying to two jets is studied using $4.6 \mathrm{fb}^{-1}$ of proton--proton collision data at $\sqrt{\rm{s}} = 7$ TeV recorded with the ATLAS detector at the LHC. The combined $WW+WZ$ cross section is measured with a significance of 3.4$\sigma$ and is found to be $68 \pm 7 \ \mathrm{(stat.)} \pm 19 \ \mathrm{(syst.)} \ pb$, in agreement with the Standard Model expectation of $61.1 \pm 2.2 \ \mathrm{pb}$. The distribution of the transverse momentum of the dijet system is used to set limits on anomalous contributions to the triple gauge coupling vertices and on parameters of an effective-field-theory model.
Data on inclusive and semi-inclusive production of nonstrange meson resonances from a bubble chamber study of pn interactions at 19 GeV/c are presented. Most of the results concern ρ0 production. The inclusive cross-sectionσ(pn → ρ0+x)=(2.4±0.4) mb agrees well with pp data. The ρ0 cross-sections are equal in the protonlike and neutron-like hemispheres. The differential cross-sections are in general agreement with earlier observation in pp interactions. In the fragmentation region the approximate structure function can be described byEdσ/dx= =a(1−|x|)n withn=3.0±0.8 in agreement with recent predictions from quark counting rules. The production of ω(780) is observed in the reaction pn→pp+ω+X with a cross-section σ=(0.13±0.03) mb. There is indication of f0(1270) and g(1680) production.
The reaction γ + p → Φ + p has been measured using a spark chamber spectrometer and a tagged photon beam in the energy range from 4.6 to 6.7 GeV. Approximately 3500 photoproduced elastic Φ-events have been collected in the t -range between t min and t = −0.4 (GeV/ c ) 2 . Cross sections and t -distributions are presented.
The topology of hadronic e + e − annihilation events has been analysed using the sphericity tensor and a cluster method. Comparison with quark models including gluon bremsstrahlung yields good agreement with the data. The strong-coupling constant is determined in 1st order QCD to be α S =0.19±0.04 (stat) ± 0.04 (syst.) at 22 GeV and α S =0.16 ±0.02± 0.03 at 34 GeV. The differential cross section with respect to the energy fraction carried by the most energetic parton agrees with the prediction of QCD, but cannot be reproduced by a scalar gluon model. These results are stable against variations of the transverse momentum distribution of the fragmentation function within the quoted errors.