Version 2
Measurements of the Higgs boson inclusive and differential fiducial cross-sections in the diphoton decay channel with $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 08 (2022) 027, 2022.
Inspire Record 2023464 DOI 10.17182/hepdata.137886

A measurement of inclusive and differential fiducial cross-sections for the production of the Higgs boson decaying into two photons is performed using $139~\text{fb}^{-1}$ of proton--proton collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS experiment at the Large Hadron Collider. The inclusive cross-section times branching ratio, in a fiducial region closely matching the experimental selection, is measured to be $67\pm 6$ fb, which is in agreement with the state-of-the-art Standard Model prediction of $64\pm 4$ fb. Extrapolating this result to the full phase space and correcting for the branching ratio, the total cross-section for Higgs boson production is estimated to be $58\pm 6$ pb. In addition, the cross-sections in four fiducial regions sensitive to various Higgs boson production modes and differential cross-sections as a function of either one or two of several observables are measured. All the measurements are found to be in agreement with the Standard Model predictions. The measured transverse momentum distribution of the Higgs boson is used as an indirect probe of the Yukawa coupling of the Higgs boson to the bottom and charm quarks. In addition, five differential cross-section measurements are used to constrain anomalous Higgs boson couplings to vector bosons in the Standard Model effective field theory framework.

60 data tables

Measured inclusive cross sections in the five fiducial regions. Each systematic uncertainty source is fully uncorrelated with the other sources.

Measured differential cross section with associated uncertainties as a function of $p_{T}^{\gamma\gamma}$. Each systematic uncertainty source is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of $N_\mathrm{jets}$. Each systematic uncertainty source is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

More…

Measurement of differential cross sections for single diffractive dissociation in $\sqrt{s} = 8$ TeV $pp$ collisions using the ATLAS ALFA spectrometer

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 02 (2020) 042, 2020.
Inspire Record 1762584 DOI 10.17182/hepdata.93063

A dedicated sample of Large Hadron Collider proton-proton collision data at centre-of-mass energy $\sqrt{s}=8$ TeV is used to study inclusive single diffractive dissociation, $pp \rightarrow Xp$. The intact final-state proton is reconstructed in the ATLAS ALFA forward spectrometer, while charged particles from the dissociated system $X$ are measured in the central detector components. The fiducial range of the measurement is $-4.0 < \log_{10} \xi < -1.6$ and $0.016 < |t| < 0.43 \ {\rm GeV^2}$, where $\xi$ is the proton fractional energy loss and $t$ is the squared four-momentum transfer. The total cross section integrated across the fiducial range is $1.59 \pm 0.13 \ {\rm mb}$. Cross sections are also measured differentially as functions of $\xi$, $t$, and $\Delta \eta$, a variable that characterises the rapidity gap separating the proton and the system $X$. The data are consistent with an exponential $t$ dependence, ${\rm d} \sigma / {\rm d} t \propto \text{e}^{Bt}$ with slope parameter $B = 7.65 \pm 0.34 \ {\rm GeV^{-2}}$. Interpreted in the framework of triple Regge phenomenology, the $\xi$ dependence leads to a pomeron intercept of $\alpha(0) = 1.07 \pm 0.09$.

3 data tables

Hadron-level differential SD cross section as a function of Delta Eta.

Hadron-level differential SD cross section as a function of t.

Hadron-level differential SD cross section as a function of log_10 xi.


Measurements and interpretations of Higgs-boson fiducial cross sections in the diphoton decay channel using 139 fb$^−1$ of $pp$ collision data at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration
ATLAS-CONF-2019-029, 2019.
Inspire Record 1743893 DOI 10.17182/hepdata.111349

Fiducial integrated and differential cross sections for the production of the Higgs boson decaying to two photons are measured using 139 fb$^{-1}$ of proton--proton collision data recorded at $\sqrt{s}=13$ TeV by the ATLAS experiment at the Large Hadron Collider. The inclusive production cross section in a fiducial region closely matching the experimental selection of the photons is measured to be 65.2 $\pm$ 7.1 fb, which is in good agreement with the Standard Model prediction of 63.6 $\pm$ 3.3 fb. Differential measurements are performed for a set of variables that are related to the diphoton kinematics as well as the kinematics and multiplicity of the jets produced in association with the Higgs boson. The measurements are compared to various QCD calculations and are found to be in good agreement with the Standard Model predictions. The measurements are also used to probe the strength and tensor structure of the interactions of the Higgs boson using an effective Lagrangian which introduces additional CP-even and CP-odd interactions. In addition, an interpretation of the transverse momentum distribution of the Higgs boson is performed as an indirect probe of the Yukawa coupling of the Higgs boson to the charm quark. Resulting limits on the strength of anomalous interactions are presented for these two approaches.

60 data tables

Measured differential cross section with associated uncertainties as a function of $p_{T}^{\gamma\gamma} (N_\mathrm{jets}^{p_T>30\ \mathrm{GeV}}=0)$. Each systematic uncertainty source is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of $p_{T}^{\gamma\gamma} (N_\mathrm{jets}^{p_T>40\ \mathrm{GeV}}=0)$. Each systematic uncertainty source is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of $\pi - |\Delta\phi_{\gamma\gamma,jj}|$. Each systematic uncertainty source is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

More…

Measurement of the production cross section for single top quarks in association with W bosons in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 10 (2018) 117, 2018.
Inspire Record 1674077 DOI 10.17182/hepdata.85698

A measurement is presented of the associated production of a single top quark and a W boson in proton-proton collisions at $\sqrt{s}=$ 13 TeV by the CMS Collaboration at the CERN LHC. The data collected corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The measurement is performed using events with one electron and one muon in the final state along with at least one jet originated from a bottom quark. A multivariate discriminant, exploiting the kinematic properties of the events, is used to separate the signal from the dominant $\mathrm{t\overline{t}}$ background. The measured cross section of 63.1 $\pm$ 1.8 (stat) $\pm$ 6.4 (syst) $\pm$ 2.1 (lumi) pb is in agreement with the standard model expectation.

2 data tables

The measured total cross sections based on the $\rm{e}^\pm \mu^\mp$ decay channel. The first uncertainty is the statistical, the second is the systematic, and the last due to the integrated luminosity.

Summary of the individual contributions to the uncertainty in the $\sigma_{tW}$ measurement.


Measurement of the single top quark and antiquark production cross sections in the t channel and their ratio in pp collisions at sqrt(s)=13 TeV

The CMS collaboration
CMS-PAS-TOP-17-011, 2018.
Inspire Record 1680899 DOI 10.17182/hepdata.85704

The cross sections for the production of single top quarks and antiquarks in the $t$ channel, and their ratio, are measured in proton-proton collisions at a center-of-mass energy of $13~\mathrm{TeV}$. The full data set recorded in 2016 by the CMS detector at the LHC is analyzed, corresponding to an integrated luminosity of $35.9~\mathrm{fb}^{-1}$. Events with one muon or electron and two jets are selected, where one of the two jets is identified as originating from a bottom quark. A multivariate discriminator exploiting several kinematic variables is applied to separate signal from background events. The ratio $R_{t\mathrm{\text{-}ch.}}$ of the cross sections is measured to be $1.65 \pm0.02\,\text{(stat)} \pm0.04\,\text{(syst)}$. The total cross section for the production of single top quarks or antiquarks is measured to be $219.0 \pm1.5\,\text{(stat)} \pm33.0\,\text{(syst)} \,\mathrm{pb}$ and the absolute value of the CKM matrix element $V_{\mathrm{tb}}$ is determined to be $1.00 \pm0.05\,\text{(exp)} \pm0.02 \,\text{(theo)}$. All results are in agreement with the standard model predictions.

7 data tables

The measured cross section of top quark production in $t$-channel. The first uncertainty is the statistical, the second is due to profiled systematic sources, the third is due to the sources describing signal modelling (externalized), and the last due to the integrated luminosity (externalized).

The measured cross section of top antiquark production in $t$-channel. The first uncertainty is the statistical, the second is due to profiled systematic sources, the third is due to the sources describing signal modelling (externalized), and the last due to the integrated luminosity (externalized).

The measured inclusive cross section of production of the top quarks and antiquarks in $t$-channel. The first uncertainty is the statistical, the second is due to profiled systematic sources, the third is due to the sources describing signal modelling (externalized), and the last due to the integrated luminosity (externalized).

More…

Measurement of the prompt $J/\psi$ pair production cross-section in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 76, 2017.
Inspire Record 1502618 DOI 10.17182/hepdata.76840

The production of two prompt $J/\psi$ mesons, each with transverse momenta $p_{\mathrm{T}}>8.5$ GeV and rapidity $|y| < 2.1$, is studied using a sample of proton-proton collisions at $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of 11.4 fb$^{-1}$ collected in 2012 with the ATLAS detector at the LHC. The differential cross-section, assuming unpolarised $J/\psi$ production, is measured as a function of the transverse momentum of the lower-$p_{\mathrm{T}}$ $J/\psi$ meson, di-$J/\psi$ $p_{\mathrm{T}}$ and mass, the difference in rapidity between the two $J/\psi$ mesons, and the azimuthal angle between the two $J/\psi$ mesons. The fraction of prompt pair events due to double parton scattering is determined by studying kinematic correlations between the two $J/\psi$ mesons. The total and double parton scattering cross-sections are compared with predictions. The effective cross-section of double parton scattering is measured to be $\sigma_{\mathrm{eff}} = 6.3 \pm 1.6 \mathrm{(stat)} \pm 1.0 \mathrm{(syst)}$ mb.

16 data tables

The cross-section in bins of the sub-leading $J/\psi$ transverse momentum in the central rapidity region, assuming unpolarised $J/\psi$ mesons and excluding the $J/\psi$ spin-alignment systematic uncertainty. The branching fraction and luminosity uncertainties are not included in the systematic uncertainty as they are constant at 1.1$\%$ and 1.9$\%$ respectively.

The cross-section in bins of the sub-leading $J/\psi$ transverse momentum in the forward rapidity region, assuming unpolarised $J/\psi$ mesons and excluding the $J/\psi$ spin-alignment systematic uncertainty. The branching fraction and luminosity uncertainties are not included in the systematic uncertainty as they are constant at 1.1$\%$ and 1.9$\%$ respectively.

The cross-section in bins of the di-$J/\psi$ transverse momentum in the central rapidity region, assuming unpolarised $J/\psi$ mesons and excluding the $J/\psi$ spin-alignment systematic uncertainty. The branching fraction and luminosity uncertainties are not included in the systematic uncertainty as they are constant at 1.1$\%$ and 1.9$\%$ respectively.

More…