Evidence for $CP$ violation and measurement of $CP$-violating parameters in B$^0_\mathrm{s}$ $\to$ J/$\psi\,\phi$(1020) decays in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-23-004, 2024.
Inspire Record 2863762 DOI 10.17182/hepdata.156384

A pioneering machine-learning-based flavor-tagging algorithm combining same-side and opposite-side tagging is used to obtain the equivalent of 27$\,$000 tagged B$^0_\mathrm{s}$$\to$ J/$\psi\, \phi$(1020) decays from pp collisions at $\sqrt{s} =$ 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 96.5 fb$^{-1}$. A time- and flavor-dependent angular analysis of the $\mu^+\mu^-$K$^+$K$^-$ final state is used to measure parameters of the $\mathrm{B}^0_\mathrm{s}$-$\overline{\mathrm{B}}^0_\mathrm{s}$ system. The weak phase is measured to be $\phi_\mathrm{s}$ = $-$73 $\pm$ 23 (stat) $\pm$ 7 (syst) mrad, which, combined with a $\sqrt{s}$ = 8 TeV CMS result, gives $\phi_\mathrm{s}$ = $-$74 $\pm$ 23 mrad. This value differs from zero by 3.2 standard deviations, providing evidence for $CP$ violation in B$^0_\mathrm{s}$$\to$ J/$\psi\,\phi$(1020) decays. All measured physics parameters are found to agree with standard model predictions where available.

5 data tables

Measured values and uncertainties of the main parameters of interest, as obtained from the analysis to data at 13 TeV.

Values and uncertainties of the physics parameters obtained from the combination of the CMS 8 TeV and 13 TeV results using the BLUE method. The uncertainty includes both statistical and systematic sources.

Matrix of the correlations of the statistical uncertainties between pairs of physics parameters, as obtained from the analysis to data at 13 TeV.

More…

Search for Majorana neutrinos in same-sign $WW$ scattering events from $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 83 (2023) 824, 2023.
Inspire Record 2662303 DOI 10.17182/hepdata.141494

A search for Majorana neutrinos in same-sign $WW$ scattering events is presented. The analysis uses $\sqrt{s}= 13$ TeV proton-proton collision data with an integrated luminosity of 140 fb$^{-1}$ recorded during 2015-2018 by the ATLAS detector at the Large Hadron Collider. The analysis targets final states including exactly two same-sign muons and at least two hadronic jets well separated in rapidity. The modelling of the main backgrounds, from Standard Model same-sign $WW$ scattering and $WZ$ production, is constrained with data in dedicated signal-depleted control regions. The distribution of the transverse momentum of the second-hardest muon is used to search for signals originating from a heavy Majorana neutrino with a mass between 50 GeV and 20 TeV. No significant excess is observed over the background expectation. The results are interpreted in a benchmark scenario of the Phenomenological Type-I Seesaw model. In addition, the sensitivity to the Weinberg operator is investigated. Upper limits at the 95% confidence level are placed on the squared muon-neutrino-heavy-neutrino mass-mixing matrix element $\vert V_{\mu N} \vert^{2}$ as a function of the heavy Majorana neutrino's mass $m_N$, and on the effective $\mu\mu$ Majorana neutrino mass $|m_{\mu\mu}|$.

2 data tables

Observed and expected 95% CL upper limits on the heavy Majorana neutrino mixing element $\vert V_{\mu N} \vert^{2}$ as a function of $m_N$ in the Phenomenological Type-I Seesaw model.

Cutflow for a selection of signal samples used in this analysis. The flavour-aligned scenario (in which $\vert V_{\mu N} \vert^{2}=1$) is considered for heavy Majorana neutrino samples. The event yields include all correction factors applied to simulation, and is normalised to 140 fb$^{-1}$. The `Skim' selection requires 2 baseline muons and 2 jets satisfying the object definitions described in Section 3 and $m_{jj} > 150$ GeV. Uncertainties are statistical only.


Precise determination of the B0s-B0sbar oscillation frequency

The LHCb collaboration Aaij, R. ; Beteta, C. Abellán ; Ackernley, T. ; et al.
Nature Phys. 18 (2022) 1-5, 2022.
Inspire Record 1857623 DOI 10.17182/hepdata.105881

Mesons comprising a beauty quark and a strange quark can oscillate between particle (B0s) and antiparticle (B0s) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, deltams. Here we present ameasurement of deltams using B0s2DsPi decays produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be deltams = 17.7683 +- 0.0051 +- 0.0032 ps-1, where the first uncertainty is statistical and the second systematic. This measurement improves upon the current deltams precision by a factor of two. We combine this result with previous LHCb measurements to determine deltams = 17.7656 +- 0.0057 ps-1, which is the legacy measurement of the original LHCb detector.

1 data table

Summary of LHCb measurements. Comparison of LHCb $\Delta m_s$ measurements from Refs. [8–11], the result presented in this article and their average. For the average, following systematic uncertainties are assumed to be fully correlated(:) zScale, MomentumScale, VeloAlignment and DecayTimeBias. The measurements are statistically uncorrelated.


Version 2
Measurement of the $CP$ violating phase $\phi_{\text{s}}$ in the $\mathrm{B}_s \to \mathrm{J}/\psi\,\phi(1020) \to \mu^+\mu^-\,\mathrm{K}^+\mathrm{K}^-$ channel in proton-proton collisions at $\sqrt{s} = 13~\mathrm{TeV}$

The CMS collaboration
CMS-PAS-BPH-20-001, 2020.
Inspire Record 1789136 DOI 10.17182/hepdata.95676

The $CP$ violating weak phase $\phi_{\text{s}}$, and the decay width difference $\Delta\Gamma_{\text{s}}$ between the light and heavy $\mathrm{B_s}$ mass eigenstates are measured with the CMS detector at the LHC in a sample of reconstructed $\mathrm{B}_s \to \mathrm{J}/\psi\,\phi(1020) \to \mu^+\mu^-\,\mathrm{K}^+\mathrm{K}^-$ decays. The measurement is based on a data set corresponding to an integrated luminosity of $96.4\;\mathrm{fb}^{-1}$, collected in proton-proton collisions at a center-of-mass energy of $13\;\mathrm{TeV}$ in 2017-2018. To extract the values of $\phi_{\text{s}}$ and $\Delta\Gamma_{\text{s}}$, a time-dependent and flavor-tagged angular analysis of the $\mu^+\mu^-\,\mathrm{K}^+\mathrm{K}^-$ final state is performed. The analysis employs a novel opposite-side muon flavor tagger based on machine learning techniques, which, in conjunction with a dedicated tagging trigger, allowed to reach an unprecedented tagging power. The measurement yields $\phi_{\text{s}} = -0.011 \pm 0.050\,\mathrm{(stat)} \pm 0.010\,\mathrm{(syst)}\;\mathrm{rad}$, and $\Delta\Gamma_{\text{s}} = 0.114 \pm 0.014\,\mathrm{(stat)} \pm 0.007\,\mathrm{(syst)}\;\mathrm{ps}^{-1}$, in agreement with the standard model predictions. When combined with our previous measurement at a center-of-mass energy of 8 TeV, the following values are obtained: $\phi_{\text{s}} = -0.021 \pm 0.045\;\mathrm{rad}$, $\Delta\Gamma_{\text{s}} = 0.1074 \pm 0.0097\;\mathrm{ps}^{-1}$, a significant improvement over the 8 TeV result.

4 data tables

Results of the fit to the data at 13 TeV. Statistical uncertainties are obtained from the increase in $-\log{\mathcal{L}}$ by 0.5.

Values of parameter obtained combining the 13 TeV results with those obtained by CMS at 8 TeV.

Statistical correlation matrix of the physics parameters of interest, as obtained from the fit to data at 13 TeV.

More…