The dependence of f$_0$(980) production on the final-state charged-particle multiplicity is reported for proton-proton (pp) collisions at the centre-of-mass energy, $\sqrt{s}= 13$ TeV. The production of f$_0$(980) is measured with the ALICE detector via the f$_0(980) \rightarrow π^{+}π^{-}$ decay channel in a midrapidity region of $|y| < 0.5$. The evolution of the integrated yields and mean transverse momentum of f$_{0}$(980) as a function of charged-particle multiplicity measured in pp at $\sqrt{s} = 13$ TeV follows the trends observed in pp at $\sqrt{s} = 5.02$ TeV and in proton-lead (p-Pb) collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. Particle yield ratios of f$_{0}$(980) to $π^{\pm}$ and K$^{*}$(892)$^{0}$ are found to decrease with increasing charged-particle multiplicity. These particle ratios are compared with calculations from the canonical statistical thermal model as a function of charged-particle multiplicity. The thermal model calculations provide a better description of the decreasing trend of particle ratios when no strange or antistrange quark composition for f$_{0}$(980) is assumed, which suggests that the tetraquark interpretation of the f$_{0}$(980) is disfavored.
Transverse momentum spectra in different multiplicity classes. Each spectrum is corrected for the branching ratio of (46 $\pm$ 6)% based on [Phys. Rev. Lett. 111 no. 6, (2013) 062001].
The ratio of transverse momentum spectrum to the INEL > 0 spectrum
Transverse momentum integrated f0(980) yield in pp collisions
The dependence of $\mathrm{f}_{0}$(980) production on the final-state charged-particle multiplicity in p$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV is reported. The production of $\mathrm{f}_{0}$(980) is measured with the ALICE detector via the $\mathrm{f}_0 (980) \rightarrow \pi^{+}\pi^{-}$ decay channel in a midrapidity region of $-0.5<y<0$. Particle yield ratios of $\mathrm{f}_{0}$(980) to $\pi$ and $\mathrm{K}^{*}$(892)$^{0}$ are found to be decreasing with increasing charged-particle multiplicity. The magnitude of the suppression of the $\mathrm{f}_{0}$(980)/$\pi$ and $\mathrm{f}_{0}$(980)/$\mathrm{K}^{*}$(892)$^{0}$ yield ratios is found to be dependent on the transverse momentum $p_{\mathrm{T}}$, suggesting different mechanisms responsible for the measured effects. Furthermore, the nuclear modification factor $Q_{\mathrm{pPb}}$ of $\mathrm{f}_{0}$(980) is measured in various multiplicity ranges. The $Q_{\mathrm{pPb}}$ shows a strong suppression of the $\mathrm{f}_{0}$(980) production in the $p_{\mathrm{T}}$ region up to about 4 GeV/$c$. The results on the particle yield ratios and $Q_{\mathrm{pPb}}$ for $\mathrm{f}_{0}$(980) may help to understand the late hadronic phase in p$-$Pb collisions and the nature of the internal structure of $\mathrm{f}_{0}$(980) particle.
Transverse momentum spectra in different multiplicity classes. Each spectrum is corrected for the branching ratio of (46 $\pm$ 6)% based on [Phys. Rev. Lett. 111 no. 6, (2013) 062001].
The ratio of transverse momentum spectrum to the NSD spectrum
The double ratio of particle yield of f0((980) to charged pions