The differential cross section for the charge-exchange reaction K−p→K¯0n has been measured at 22 incident momenta between 515 and 956 MeV/c. Experimental results and Legendre-polynomial fits to the data are presented.
No description provided.
The effects of resonance production on correlations in final states containing kaons in p p annihilations at 0.76 GeV c have been in detail. We show that correlation distributions of unlike kaon pairs, K S 0 K ± , can be completerly by resonance production. However, for like kaon pairs, K S ) K S 0 , we require the added effects of second-order interference. Using this interference effect we are able to measure the dimensions of the emission region for kaons in p p annihilations at low energy as R = 0.9 ± 0.2 fm.
We report on an experiment to obtain differential cross sections for K+p elastic scattering in the vicinity of the possible exotic baryon, the Z1*(1900). The differential cross sections are based on typically 70 000 selected events in the angular region −0.9≤cosθc.m.≤0.9 at each of 22 momenta from 0.865 to 2.125 GeV/c. The data are intended for use in partial-wave analysis to search for the Z1*.
No description provided.
The inclusive production of π± andK± mesons and of protons and antiprotons ine+e− annihilation has been measured at c.m. energies ofW=14, 22 and 34GeV. Using time of flight measurements and Cerenkov counters the full momentum range has been covered. Differential cross sections and total particle yields are given. At particle momenta of 0.4 GeV/c more than 90% of the charged hadrons are pions. With increasing momentum the fraction of pions among the charged hadrons decreases. AtW=34 GeV and a momentum of 5 GeV/c the particle fractions are approximately π±:K±:p,\(\bar p = 0.55:0.3:0.15\). On average an event atW=34 GeV contains 10.3±0.4π±, 2.0±0.2K± and 0.8±0.1p,\(\bar p\). In addition, we present results on baryon correlations using a sample of events where two or more protons and/or antiprotons are observed in the final state.
Axis error includes +- 0.0/0.0 contribution (?////EXCEPT OVERALL NORMALIZATION).
A coupled channel analysis has been carried out using a new amplitude analysis of the K 0 s K 0 s system produced in the reaction π − p→K 0 s K 0 s n at 22 GeV/ c , which contained about 40 000 new events in the low- t region (| t − t min |<0.1 GeV 2 ). Here only the I G =0 + , J PC =2 ++ amplitude from this analysis is considered, together with available data from other experiments in channels with the same quantum numbers in order to determine which 2 ++ isoscalar mesons have significant pseudoscalar-pseudoscalar couplings. It is found that four poles, f(1270), f'(1525), θ(1690), and f r (1810), are needed, plus a smooth background in order to fit these data; the need for the θ(1690) depends on the J/ψ radiative decay alone, and the f r (1810) is seen only in hadronic production.
None
MISPRINT CORRECTED DATA PRESENTED BY D.I.PATALAKHA.
The diffractive dissociation of a 200-GeV/c π− beam into KS0KS0π+π−π− has been observed. The diffractive KS0KS0π+π−π− cross section is 1.59±0.78 μb. The ratio of the diffractive KS0KS0π+π−π− cross section to the diffractive KS0KS0π− cross section is 0.40±0.13, which is in good agreement with a diffractive-fragmentation-model prediction of 0.36. There is evidence for simultaneous production of K*− and K*+ in the diffractive KS0KS0π+π−π− sample. The K*+−KS0π−+ mass distribution shows an enhancement near 1.95 GeV.
We have studied inclusive KS0, Λ, and Λ¯ production in π+d interactions at 24 GeV/c. The observed cross sections are 2.5±0.13 mb for KS0, 1.62±0.09 mb for Λ, and 0.12±0.02 mb for Λ¯. Longitudinal- and transverse-momentum distributions of the produced particles are presented. The average charged multiplicities of the system associated with a KS0 or with a Λ are presented and discussed. A nonzero average Λ polarization (-0.10±0.03) is observed. The x distribution of the backward (forward) KS0 and Λ produced in the reaction are in agreement with the x distribution of valence quarks in nucleons in nuclear target (pion beam), as predicted by the quark-recombination model of particle production applied to nuclear targets.
Axis error includes +- 0.0/0.0 contribution (?////THE QUOTED IN THE TABLES ERROR INCLUDE ESTIMATES OF UNCERTAINTY IN EACH OF THE CORRECTIONS MADE IN ADDITION TO THE STATISTICAL ERRORCORRECTIONS HAVE BEEN MADE FOR DETECTION, MEASURING, AND FITTING LOSSES AS WELL AS FOR NEUTRAL DECAY MODES OF THE STRANGE PARTICLESNO CORRECTION WAS MADE FOR CONTAMINATION FROM KL'S NOR FOR UNAVOIDABLE INCLUSION OF SIGMA0 EVENTS).
Axis error includes +- 0.0/0.0 contribution (?////THE QUOTED IN THE TABLES ERROR INCLUDE ESTIMATES OF UNCERTAINTY IN EACH OF THE CORRECTIONS MADE IN ADDITION TO THE STATISTICAL ERRORCORRECTIONS HAVE BEEN MADE FOR DETECTION, MEASURING, AND FITTING LOSSES AS WELL AS FOR NEUTRAL DECAY MODES OF THE STRANGE PARTICLESNO CORRECTION WAS MADE FOR CONTAMINATION FROM KL'S NOR FOR UNAVOIDABLE INCLUSION OF SIGMA0 EVENTS).
Axis error includes +- 0.0/0.0 contribution (?////THE QUOTED IN THE TABLES ERROR INCLUDE ESTIMATES OF UNCERTAINTY IN EACH OF THE CORRECTIONS MADE IN ADDITION TO THE STATISTICAL ERRORCORRECTIONS HAVE BEEN MADE FOR DETECTION, MEASURING, AND FITTING LOSSES AS WELL AS FOR NEUTRAL DECAY MODES OF THE STRANGE PARTICLESNO CORRECTION WAS MADE FOR CONTAMINATION FROM KL'S NOR FOR UNAVOIDABLE INCLUSION OF SIGMA0 EVENTS).
We present evidence for the exclusive reaction e+e−→Ds±Ds*∓, observed with the Mark III detector at the SLAC storage ring SPEAR. The Ds± is reconstructed in the φπ± decay mode, while the Ds*∓ is detected as a narrow peak in the recoil-mass distribution. The mass of the Ds* is found to be 2109.3±2.1±3.1 MeV/c2, yielding a Ds*−Ds mass difference of 137.9±2.1±4.3 MeV/c2. The width of the Ds* is <22 MeV/c2 at the 90%-confidence level. The observed signal corresponds to σ(e+e−→Ds+Ds*−+Ds−Ds*+)B(Ds+→φπ+)=30±6±11 pb at s=4.14 GeV.
The polarization of 26 000 Σ+ hyperons produced by 400-GeV protons on Be has been measured. The polarizations of Σ+ and Λ hyperons have the opposite sign. The magnitude increases with momentum at 5-mrad production angle, and averages 22% over the momentum range 140 to 280 GeV/c.