Search for $B^0 \to K^{\ast 0} \tau^+ \tau^-$ decays at the Belle II experiment

The Belle-II collaboration Adachi, I. ; Adamczyk, K. ; Aggarwal, L. ; et al.
Phys.Rev.Lett. 135 (2025) 151801, 2025.
Inspire Record 2911582 DOI 10.17182/hepdata.159541

We present a search for the rare flavor-changing neutral-current decay $B^0 \to K^{\ast 0} \tau^+ \tau^-$ with data collected by the Belle II experiment at the SuperKEKB electron-positron collider. The analysis uses a 365 fb$^{-1}$ data sample recorded at the center-of-mass energy of the $\Upsilon(4S)$ resonance. One of the $B$ mesons produced in the $\Upsilon(4S)\to B^0 \bar{B}^0$ process is fully reconstructed in a hadronic decay mode, while its companion $B$ meson is required to decay into a $K^{\ast 0}$ and two $\tau$ leptons of opposite charge. The $\tau$ leptons are reconstructed in final states with a single electron, muon, charged pion or charged $\rho$ meson, and additional neutrinos. We set an upper limit on the branching ratio of $BR(B^0 \to K^{\ast 0} \tau^+ \tau^-) < 1.8 \times 10^{-3}$ at the 90% confidence level, which is the most stringent constraint reported to date.

0 data tables match query

A model-agnostic likelihood for the reinterpretation of the $\boldsymbol{B^{+}\to K^{+} ν\barν}$ measurement at Belle II

The Belle-II collaboration Abumusabh, Merna ; Adachi, Ichiro ; Aggarwal, Latika ; et al.
Belle II Preprint 2025-021 KEK Preprint 2025-20, 2025.
Inspire Record 2947386 DOI 10.17182/hepdata.166082

We recently measured the branching fraction of the $B^{+}\rightarrow K^{+}ν\barν$ decay using 362 fb$^{-1}$ of on-resonance $e^+e^-$ collision data, under the assumption of Standard Model kinematics, providing the first evidence for this decay. To facilitate future reinterpretations and maximize the scientific impact of this measurement, we hereby publicly release the full analysis likelihood along with all necessary material required for reinterpretation under arbitrary theoretical models sensitive to this measurement. In this work, we demonstrate how the measurement can be reinterpreted within the framework of the Weak Effective Theory. Using a kinematic reweighting technique in combination with the published likelihood, we derive marginal posterior distributions for the Wilson coefficients, construct credible intervals, and assess the goodness of fit to the Belle II data. For the Weak Effective Theory Wilson coefficients, the posterior mode of the magnitudes $|C_\mathrm{VL}+C_\mathrm{VR}|$, $|C_\mathrm{SL}+C_\mathrm{SR}|$, and $|C_\mathrm{TL}|$ corresponds to the point ${(11.3, 0.00, 8.21)}$. The respective 95% credible intervals are $[1.86, 16.2]$, $[0.00, 15.4]$, and $[0.00, 11.2]$.

0 data tables match query

Evidence for $B^{+}\to K^{+}\nu\bar{\nu}$ Decays

The Belle-II collaboration Adachi, I. ; Adamczyk, K. ; Aggarwal, L. ; et al.
Phys.Rev.D 109 (2024) 112006, 2024.
Inspire Record 2725943 DOI 10.17182/hepdata.146803

We search for the rare decay $B^{+}\rightarrow K^{+}\nu\bar{\nu}$ in a $362\ \rm{fb}^{-1}$ sample of electron-positron collisions at the $\Upsilon(4S)$ resonance collected with the Belle II detector at the SuperKEKB collider. We use the inclusive properties of the accompanying $B$ meson in $\Upsilon(4S) \to B\kern 0.18em\overline{\kern -0.18em B}{}$ events to suppress background from other decays of the signal $B$ candidate and light-quark pair production. We validate the measurement with an auxiliary analysis based on a conventional hadronic reconstruction of the accompanying $B$ meson. For background suppression, we exploit distinct signal features using machine learning methods tuned with simulated data. The signal-reconstruction efficiency and background suppression are validated through various control channels. The branching fraction is extracted in a maximum likelihood fit. Our inclusive and hadronic analyses yield consistent results for the $B^{+}\rightarrow K^{+}\nu\bar{\nu}$ branching fraction of $\left[2.7\pm 0.5(\mathrm{stat})\pm 0.5(\mathrm{syst})\right] \times 10^{-5}$ and $\left[1.1^{+0.9}_{-0.8}(\mathrm{stat}){}^{+0.8}_{-0.5}(\mathrm{syst})\right] \times 10^{-5}$, respectively. Combining the results, we determine the branching fraction of the decay $B^{+}\rightarrow K^{+}\nu\bar{\nu}$ to be $\left[2.3 \pm 0.5(\mathrm{stat})^{+0.5}_{-0.4}(\mathrm{syst})\right]\times 10^{-5}$, providing the first evidence for this decay at $3.5$ standard deviations. The combined result is $2.7$ standard deviations above the standard model expectation.

0 data tables match query