We have measured the differential cross section d2σdΩdTπ and the polarization parameter P for the production of π+ and π− in various target nuclei (H1, H2, Be, C, O, Al, Ni, Cu, Mo, and Pb) by protons with a kinetic energy of 585 MeV, for production angles θπ=22.5°, 45°, 60°, 90°, and 135°, and for pion kinetic energies Tπ of 24, 35, 46, 88, 151, 192, and 254 MeV (all quantities in the laboratory system). Our data disagree strongly with recent data for 580-MeV protons. On the other hand, for pion energies up to 150 MeV, our cross sections differ little from those measured for a proton energy of 730 MeV. For nuclei with A>20, the total production cross sections σ(π+) and σ(π−) show the Z13 and N23 proportionality expected from theoretical arguments. There is evidence in our data of a shift of the π+ energy distributions compared to the π− distributions due to the effects of the Coulomb field of the nuclear protons on the emitted pions. NUCLEAR REACTIONS H1, H2, Be, C, O, Al, Ni, Cu, Mo, Pb p, π±, Tp=585 MeV; measured σ(Tπ, θπ) and asymmetry parameter P(Tπ, θπ).
No description provided.
No description provided.
No description provided.
Measurements of the invariant cross sections for the reaction p(400 GeV)+(Li6, Be,C,Al,Cu,Ta)→(π±, K±)+X at laboratory angles from 70° to 160° are reported. Upper limits for p¯ production are given. Comparisons of the data are made using several scaling variables. NUCLEAR REACTIONS Inclusive cross section; 400 GeV incident protons; Li6, Be, C, Al, Cu, Ta targets; production of π, K, and p¯; lab angles 70° to 160°.
No description provided.
No description provided.
No description provided.
None
No description provided.
None
No description provided.
Measurements of the double-differential charged pion production cross-section in the range of momentum 100 MeV/c < p < 800 MeV/c and angle 0.35 < \theta < 2.15 rad in proton-beryllium, proton-carbon, proton-aluminium, proton-copper, proton-tin, proton-tantalum and proton-lead collisions are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 GeV/c to 12.9 GeV/c hitting a target with a thickness of 5% of a nuclear interaction length.
Double-differential cross section for inclusive PI+ production in the LAB system with the C target for a PI+ polar angle from 0.95 to 1.15 radians.
Highly inelastic processes in hadron-nucleus reactions at several GeV have been studied by measuring multi-particle emission in the target-rapidity region. Events with no leading particle(s) but with high multiplicities were observed up to 4 GeV. Proton spectra from such events were well reproduced with a single-moving-source model, which implied possible formation of a local source. The number of nucleons involved in the source was estimated to be (3–5)A 1 3 from the source velocity and the multiplicity of emitted protons. In those processes the incident energy flux seemed to be deposited totally or mostly (>62;75%) in the target nucleus to form the local source. The cross sections for the process were about 30% of the geometrical cross sections, with little dependence on incident energies up to 4 GeV and no dependence on projectiles (pions or protons). The E 0 parameter in the invariant-cross-section formula E d 3 σ /d p 3 = A exp (− E / E 0 ) for protons from the source increases with incident energy from 1 to 4 GeV/ c , but seems to saturate above 10 GeV at a value E 0 = 60–70 MeV. Three components in the emitted nucleon spectra were observed which would correspond to three stages of the reaction process: primary, pre-equilibrium and equilibrium.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
Cross sections of cumulative K exp + and K exp - -meson production in the 200-1000 MeV kinetic energy range at 90 deg, 120 deg, 168 deg (l.c.s.) are measured. The ranges of kinetic energies and emission angles mean that, according to the hypothesis of cum ...
.
Invariant cross sections for hadron production (π±,K±,p and\(\bar p\)) by protons off C, Al, Cu, Sn and Pb nuclei have been measured at 70 GeV for theP∧ range from 1 up to 4.65 GeV/c. TheA-dependence of the invariant cross section is not described by the exponentialAα(P∧), which points to the presence of secondary hadron absorption in nuclei.
.
None
Axis error includes +- 0.0/0.0 contribution (?////DUE TO UNACCURASY IN OUTGOING PARTICLES MOMENTUM).
Particle production in proton-induced reactions at 14.6 GeV/c on Be, Al, Cu, and Au targets has been systematically studied using the E-802 spectrometer at the BNL-Alternating Gradient Synchrotron. Particles are measured in the angular range from 5° to 58° and identified up to momenta of 5, 3.5, and 8 GeV/c for pions, kaons, and protons, respectively. Mechanisms for particle production are discussed in comparison with heavy-ion-induced reactions at the same incident energy per nucleon.
No description provided.