New high-statistics measurements of π + p elastic scattering differential cross sections are presented at 30 momentum points between 1.282 and 2.472 GeV/ c , covering most of the angular distribution outside the forward diffractive peak. These data show significant disagreements at some momenta with previous high-statistics experiments and with current partial wave analyses.
No description provided.
Differential cross sections for elastic π±−p scattering have been measured at lab momenta of 8 and 12 GeV/c in a momentum-transfer region corresponding to 1.2≤−t≤6 (GeV/c)2. Also, differential cross sections near 180° were measured for 4 and 8 GeV/c pions. At momentum transfers greater than −t=2 (GeV/c)2, the π−p cross sections drop much faster with increasing angle than the corresponding p−p cross sections. Also, in the region −t≃1.3 (GeV/c)2, there is structure in the π−p angular distribution but not in the p−p angular distribution. At −t≃3 (GeV/c)2, the drop in cross section appears to stop and from then on the angular distribution is consistent with isotropy. But in the angular region 170° to 180°, the cross sections have become much larger, and sharp backward peaks are observed. Information is given on the energy and charge dependences and widths of these backward peaks.
No description provided.
Results of two studies of small angle elastic scattering are presented. The first experiment measured hadron-nucleus elastic scattering at 70, 125, 175 GeV/c incident momentum. The second experiment is a high statistics study of hadron-proton elastic scattering at 200 GeV/c incident momentum. Hadron-nucleus elastic scattering was measured for $\mu^{\pm}$, $K^{\pm}$, $p$, and $\bar{p}$ scatterinq from Be, C, Al, Cu, Sn, and Pb targets at .incident beam momenta of 70 and 175 GeV/c and for $\mu^+$, $K^+$, and $p$ scattering from Be, Al, and Pb targets at an incident beam momentum of 125 GeV/c. In all cases the minimum -t is 0.001 $(GeV/c)^2$ ; the maximum -t is 0.07, 0.16. 0.30 ($GeV/c)^2$ for incident beam momenta of 70, 125, 175 GeV/c respectively. Parameterizations of the differential cross section, $d\sigma/dt$, in the forward direction are presented....
X ERROR D(P)/P = 0.1000 PCT.