Measurement of analyzing powers of pi + and pi - produced on a hydrogen and a carbon target with a 22-GeV/c incident polarized proton beam

Allgower, C.E. ; Krueger, K.W. ; Kasprzyk, T.E. ; et al.
Phys.Rev.D 65 (2002) 092008, 2002.
Inspire Record 587580 DOI 10.17182/hepdata.22221

The analyzing powers of π+ and π− were measured using an incident 22−GeV/c transversely polarized proton beam at the Brookhaven Alternating Gradient Synchrotron. A magnetic spectrometer measured π± inclusive asymmetries on a hydrogen and a carbon target. An elastic polarimeter with a CH2 target measured pp elastic-scattering asymmetries to determine the beam polarization using published data for the pp elastic analyzing power. Using the beam polarization determined from the elastic polarimeter and asymmetries from the inclusive spectrometer, analyzing powers AN for π± were determined in the xF and pT ranges (0.45–0.8) and (0.3–1.2 GeV/c), respectively. The analyzing power results are similar in both sign and character to other measurements at 200 and 11.7 GeV/c, confirming the expectation that high-energy pion inclusive analyzing powers remain large and relatively energy independent. This suggests that pion inclusive polarimetry may be a suitable method for measuring future beam polarizations at BNL RHIC or DESY HERA. Analyzing powers of π+ and π− produced on hydrogen and carbon targets are the same. Various models to explain inclusive analyzing powers are also discussed.

0 data tables match query

BACKWARD PRODUCTION OF PIONS AND KAONS IN THE INTERACTION OF 400-GEV PROTONS WITH NUCLEI

Nikiforov, N.A. ; Bayukov, Yu.D. ; Efremenko, V.I. ; et al.
Phys.Rev.C 22 (1980) 700-710, 1980.
Inspire Record 159453 DOI 10.17182/hepdata.10010

Measurements of the invariant cross sections for the reaction p(400 GeV)+(Li6, Be,C,Al,Cu,Ta)→(π±, K±)+X at laboratory angles from 70° to 160° are reported. Upper limits for p¯ production are given. Comparisons of the data are made using several scaling variables. NUCLEAR REACTIONS Inclusive cross section; 400 GeV incident protons; Li6, Be, C, Al, Cu, Ta targets; production of π, K, and p¯; lab angles 70° to 160°.

55 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of Cross-sections and Asymmetry Parameters for the Production of Charged Pions From Various Nuclei by 585-{MeV} Protons

Crawford, J.F. ; Daum, M. ; Eaton, G.H. ; et al.
Phys.Rev.C 22 (1980) 1184-1196, 1980.
Inspire Record 143030 DOI 10.17182/hepdata.26362

We have measured the differential cross section d2σdΩdTπ and the polarization parameter P for the production of π+ and π− in various target nuclei (H1, H2, Be, C, O, Al, Ni, Cu, Mo, and Pb) by protons with a kinetic energy of 585 MeV, for production angles θπ=22.5°, 45°, 60°, 90°, and 135°, and for pion kinetic energies Tπ of 24, 35, 46, 88, 151, 192, and 254 MeV (all quantities in the laboratory system). Our data disagree strongly with recent data for 580-MeV protons. On the other hand, for pion energies up to 150 MeV, our cross sections differ little from those measured for a proton energy of 730 MeV. For nuclei with A>20, the total production cross sections σ(π+) and σ(π−) show the Z13 and N23 proportionality expected from theoretical arguments. There is evidence in our data of a shift of the π+ energy distributions compared to the π− distributions due to the effects of the Coulomb field of the nuclear protons on the emitted pions. NUCLEAR REACTIONS H1, H2, Be, C, O, Al, Ni, Cu, Mo, Pb p, π±, Tp=585 MeV; measured σ(Tπ, θπ) and asymmetry parameter P(Tπ, θπ).

3 data tables match query

No description provided.

No description provided.

No description provided.


Excitation of the Delta (1232) resonance in proton - nucleus collisions

Trzaska, M. ; Pelte, D. ; Lemaire, M. -C. ; et al.
Z.Phys.A 340 (1991) 325-331, 1991.
Inspire Record 314551 DOI 10.17182/hepdata.15689

The excitation of theΔ resonance is observed in proton collisions on C, Nb and Pb targets at 0.8 and 1.6 GeV incident energies. The mass E0 and widthΓ of the resonance are determined from the invariant mass spectra of correlated (p, π±)-pairs in the final state of the collision: The mass E0 is smaller than that of the free resonance, however by comparing to intra-nuclear cascade calculations, this reduction is traced back to the effects of Fermi motion, NN scattering and pion reabsorption in nuclear matter.

1 data table match query

Hadron spectra in hadron - nucleus collisions

Armutliiski, D. ; Baatar, Ts. ; Batsaikhan, Ts. ; et al.
JINR-P1-91-191, 1991.
Inspire Record 319258 DOI 10.17182/hepdata.38698

None

0 data tables match query

Large-angle production of charged pions by 3 GeV/c - 12 GeV/c protons on carbon, copper and tin targets

The HARP collaboration Catanesi, M.G. ; Edgecock, R. ; Ellis, Malcolm ; et al.
Eur.Phys.J.C 53 (2008) 177-204, 2008.
Inspire Record 761546 DOI 10.17182/hepdata.51401

A measurement of the double-differential $\pi^{\pm}$ production cross-section in proton--carbon, proton--copper and proton--tin collisions in the range of pion momentum $100 \MeVc \leq p < 800 \MeVc$ and angle $0.35 \rad \le \theta <2.15 \rad$ is presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was done using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections at four incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc).

1 data table match query

Double-differential cross section for PI+ production from CU in the LAB system for PI+ polar angle from 0.95 to 1.15 radians.


Multiplicity, Momentum and Angular Characteristics of $\pi^-$ Mesons for $p$ C, $d$ C, $\alpha$ C and C C Interactions at 4.2-{GeV}/$c$ Per Nucleon

The Alma Ata-Baku-Belgrade-Bucharest-Dubna-Kishinev-Leipzig- Moscow-Prague-Samarkand-Sofiya-Tashkent-Tbilisi-Ulan Bator-Varna collaboration Agakishiev, G.N. ; Akhababian, N. ; Armutliisky, D. ; et al.
Z.Phys.C 27 (1985) 177, 1984.
Inspire Record 203342 DOI 10.17182/hepdata.1999

Light ion collisions with carbon target at 4.2 GeV/c/N are studied. Pion multiplicity distributions, momentum and angular spectra are analysed. These data are described in terms of models assuming independent interactions of nucleons from the projectile nucleus with the target.

0 data tables match query

Charged pion backward production in 15-GeV - 65-GeV proton nucleus collisions

Gavrishchuk, O.P. ; Moroz, N.S. ; Peresedov, V.P. ; et al.
Nucl.Phys.A 523 (1991) 589-596, 1991.
Inspire Record 320447 DOI 10.17182/hepdata.36823

The differential cross sections of π − and π + meson production at a laboratory angle of 159° in collisions of 15–65 GeV protons with Be, C, Al, Ti, Mo and W targets are measured. The data are presented in the tables for Lorentz-invariant cross sections over the momentum range of pions from 0.25 to 0.95 GeV/ c . The slopes (“temperatures”) of a cumulative part of the pion spectra (the pion kinetic energy is >0.35 GeV) increase by 15–20% with changing A from 9 up to 184. Some discrepancy in the E -dependence of the temperature of the cumulative pion spectra is observed in the high-energy region studied, namely the temperature at 15–65 GeV, taking its slow rise over this range into account, contradicts that at 400 GeV.

0 data tables match query

Estimation of Hadron Formation Length in High p$_T$ Processes in Protonnucleus Collisions at 70 GeV

Abramov, V.V. ; Baldin, B.Yu. ; Buzulutskov, A.F. ; et al.
Sov.J.Nucl.Phys. 35 (1982) 702, 1982.
Inspire Record 168442 DOI 10.17182/hepdata.41334

Without abstract

0 data tables match query

Production of Pions and Light Fragments at Large Angles in High-Energy Nuclear Collisions

Nagamiya, S. ; Lemaire, M.C. ; Moller, E. ; et al.
Phys.Rev.C 24 (1981) 971-1009, 1981.
Inspire Record 169971 DOI 10.17182/hepdata.26341

Inclusive cross sections for production of π+, π−, p, d, H3, He3, and He4 have been measured at laboratory angles from 10° to 145° in nuclear collisions of Ne + Naf, Ne + Cu, and Ne + Pb at 400 MeV/nucleon, C + C, C + Pb, Ne + NaF, Ne + Cu, Ne + Pb, Ar + KCl, and Ar + Pb at 800 MeV/nucleon, and Ne + NaF and Ne + Pb at 2.1 GeV/nucleon. The production of light fragments in proton induced collisions at beam energies of 800 MeV and 2.1 GeV has also been measured in order to allow us to compare these processes. For equal-mass nuclear collisions the total integrated yields of nuclear charges are well explained by a simple participant-spectator model. For 800 MeV/nucleon beams the energy spectra of protons at c.m. 90° are characterized by a "shoulder-arm" type of spectrum shape with an exponential falloff at high energies, whereas those of pions are of a simple exponential type. The inverse of the exponential slope, E0, for protons is systematically larger than that for pions. This value of E0 is larger for heavier-mass projectiles and targets. It also increases monotonically with the beam energy. The angular anisotropy of protons is larger than that of pions. The yield ratio of π− to total nuclear charge goes up with the beam energy, whereas the yields of composite fragments decrease. The ratio of low-energy π− to π+, as well as that of H3 to He3, is larger than the neutron to proton ratio of the system. The spectrum shape of the composite fragments with mass number A is explained very well by the Ath power of the observed proton spectra. The sizes of the interaction region are evaluated from the observed coalescence coefficients. The radius obtained is typically 3-4 fm. The yield ratio of composite fragments to protons strongly depends on the projectile and target masses and the beam energy, but not on the emission angle of the fragments. These results are compared with currently available theoretical models. NUCLEAR REACTIONS Ne + NaF, Ne + Cu, Ne + Pb, EA=400 MeV/nucleon; C + C, C + Pb, Ne + NaF, Ne + Cu, Ne + Pb, Ar + KCl, Ar + Pb, EA=800 MeV/nucleon; Ne + NaF, Ne + Pb, EA=2100 MeV/nucleon; p + C, p+ NaF, p + KCl, p + Cu, p + Pb, E=800 MeV; p + C, p + NaF, p + KCl, p + Cu, p + Pb, E=2100 MeV; measured σ(p,θ) for π+, π−, p, d, H3, He3, and He4.

0 data tables match query