Measurements are presented of the inclusive distributions of theJ/Ψ meson produced by muons of energy 200 GeV from an ammonia target. The gluon distribution of the nucleon has been derived from the data in the range 0.04
Data are normalized to total cross section of 36 nb (not corrected for coherence).
Data are normalized to total cross section of 36 nb (not corrected for coherence).
Data are normalized to total cross section of 36 nb (not corrected for coherence).
The cross sections for J ψ production have been measured in interactions of 280 GeV μ + on hydrogen and deuterium (H, D) and also in interactions of 250 GeV μ + on iron. The single-nucleon cross sections in iron are found to be larger than those in H, D. The mean ratio of the iron to H, D photoproduction cross sections in the range 60 < v < 200 GeV is 1.45 ±0.12 (statistical) ±0.22 (systematic error). Within the framework of the photon-gluon fusion model, this indicates that the gluon density per nucleon is ∼45% larger in iron than in H, D in the range 0.026 < x < 0.085, on a mass scale Q 2 eff ∼M 2 J ψ .
First table is from combined H and DEUT data at 280 Gev. Second table is from FE data at 250 Gev.
First table is from combined H and DEUT data at 280 Gev. Second table is from FE data at 250 Gev.
THIS TABLE IS THE RATIO OF THE EFFECTIVE GLUON DISTRIBUTIONS IN IRON AND HYDROGEN(DEUTERIUM) ASSUMING THAT PHOTON-GLUON FUSION IS THE RELEVANT MECHANISM FOR J/PSI PRODUCTION.
The production of J/ ϑ and ϑ′ has been measured in 250 GeV muon iron interactions. The measured total cross sections are σ ( μ N → μ J/ ϑ X)=0.74±0.14 nb and σ ( μ N → μϑ ′X)=0.16 ± 0.07 nb. An upper limit on the cross section times branching ratio for ϒ production of BR · σ ( μ N → μϒ X) < 5.2 × 10 −38 cm 2 (at 90% confidence level) is obtained. About half the J/ ϑ cross section is found to have Z ⩾ 0.95 (where Z = E (J/ ϑ / ν ). The first-order photon-gluon fusion model agrees well with the measured Q 2 and ν dependence of the J/ ϑ data and is used to extract the gluon momentum distribution. However, higher order QCD effects are needed to explain the Z distribution of the J/ ϑ and the observed broadening of the P t 2 distribution with decreasing Z . The decay angular distributions of the J/ ϑ are found to be flat in the s -channel frame, but there is evidence for polarisation in the t -channel frame.
NUMBERS ARE CROSS-SECTIONS FOR PSI AND PSI(PRIME) BUT CROSS-SECTION*BR.RATIO FOR THE UPSILON.
THE COHERENT PRODUCTION IS NOT SUBTRACTED.
THE COHERENT PRODUCTION IS SUBTRACTED.