We have investigated the particle production and fragmentation of nuclei participating in the interactions of 10.6 GeV/n gold nuclei in nuclear emulsions. A new criterion has been found to distinguish between the interactions of these gold nuclei with the light (H,C,N,O) and heavy (Ag, Br) target nuclei in the emulsion. This has allowed separate analyses of the multiplicity and pseudo-rapidity distributions of the singly charged particles emitted in Au-(H,C,N,O) and Au-(Ag,Br) interactions, as well as of the modes of breakup of the projectile and target nuclei. The pseudo-rapidity distributions show strong forward asymmetries, particularly for the interactions with the light nuclei. Heavy target nuclei produce a more severe breakup of the projectile gold nucleus than do the lighter targets. A negative correlation between the number of fragments emitted from the target nuclei and the degree of centrality of the collisions has been observed, which can be attributed to the total destruction of the relatively light target nuclei by these very heavy projectile nuclei.
No description provided.
No description provided.
No description provided.
We report the experimental measurements on the multiplicity of slow target associated particles, in the forward (θlab≤ 90°) and backward (θlab > 90°) hemispheres, and the different correlations betwee
No description provided.
No description provided.
No description provided.
Experimental data on multiplicities and correlations of charged particles of different types produced in collisions of 4.5 A GeV/c carbon-12 with emulsion are reported and discussed. The data are compared with the results of other experiments on nucleus–nucleus and hadron–nucleus collisions. It is found that the particle production mechanism in nucleus–nucleus collisions is almost the same as in hadron–nucleus collisions. It is also observed that the shower particles' multiplicity distributions obey a KNO type scaling law, which supports the aforementioned result.
No description provided.
No description provided.
No description provided.
In this letter the distribution of slow target associated particles emitted in Au + Emulsion interactions at 11.6 A GeV/ c is studied. The three models RQMD, FRITIOF and VENUS are used for comparisons and especially their treatment of rescattering is investigated.
No description provided.
PROJECTILE ASSOCIATED HE-FRAGMENTS.
No description provided.
The degree of excitation of the emulsion target nuclei due to nuclear interactions of oxygen and sulfur projectiles at 200 GeV/nucleon incident energy has been investigated. Using the plausible assumption that the numberNb of slow particles emitted from the struck target nucleus can be interpreted as a measure of the temperatureT of the residual nucleus, we have found that there exists a critical temperatureTc of the excited target nucleus. For Ag and Br target nuclei this temperature corresponds to
No description provided.
No description provided.
The results of the multiplicity distributions of shower, grey, black, and heavily ionizing charged particles from induced16 reactions at 200A GeV are presented. The results are compared with the predictions of the Lund Monte Carlo code fritiof, the multichain model by Ranft, and the Monte Carlo code venus.
NUCLEUS - AVERAGE NUCLEI OF EMULSION.
NUCLEUS - AVERAGE NUCLEI OF EMULSION.
NUCLEUS - AVERAGE NUCLEI OF EMULSION.
Oxygen and sulfur nuclei with energies of 200 GeV/nucleon have been allowed to interact in nuclear emulsions exposed at CERN. These emulsions have been scanned with a minimum bias so that essentially all the interactions occurring were detected. Nearly 1000 interactions of each projectile have been analyzed. We present results on the multiplicity distributions, the pseudorapidity distributions, and the fragmentation of the projectile and target nuclei. It is shown that the mean number of intranuclear collisions in each interaction, calculated from a superposition model, provides a useful parameter for organizing the data. We conclude that there are no significant deviations even at these energies from models, such as the venus model, describing the interactions as being the superposition of individual nucleon-nucleon collisions.
No description provided.
No description provided.
No description provided.
Multiplicity and angular distributions of shower, grey, and black particles produced in the interactions of S32 at 200A GeV, O16 at 200 and 60A GeV, and He4 at ∼140A GeV in emulsion are compared with the predictions of a Monte Carlo code which takes into account the internuclear cascading. The correlations between the various parameters belonging to the same or to the different kinds of particles are discussed. The data on shower and grey particles from all the beams are well described by the code. However, the black prong data show a significant departure from this model.
No description provided.
No description provided.
No description provided.
We report the multiplicity and angular distributions of the low energy target-associated particles from 32S and 16O induced reactions at 200 GeV/nucleon and 16O induced reactions at 60 GeV/nucleon in emulsion. The results are compared with the Monte-Carlo Code VENUS.
No description provided.
No description provided.
THE FORWARD AND BACKWARD HEMISPHERE ARE DEFINED AS MULT(Q=FORWARD) WHEN COS(THETA) > 0 AND MULT(Q=BACKWARD) WHEN COS(THETA) < 0.
A nuclear photographic emulsion method was used to study the charge-state, ionization, and angular characteristics of secondaries produced in inelastic interactions of 56 Fe nuclei at 1.8 GeV/nucleon with H, CNO, and AgBr nuclei. The data obtained are compared with the results of calculations made in terms of the Dubna version of the cascade evaporation model (DCM). The DCM has been shown to satisfactorily describe most of the interaction characteristics for two nuclei in the studied reactions. At the same time, quantitative differences are observed in some cases.
No description provided.
No description provided.
NUCLECS IS CNO.