None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
FRAGT IS CHARGE BARYON WITH PATH < 4 CM.
FRAGT IS CHARGE BARYON WITH PATH < 4 CM.
FRAGT IS CHARGE BARYON WITH PATH < 4 CM.
Charge distributions of projectile fragments produced in the interactions of 22Ne beams with emulsion at 4.1A GeV/c have been studied. Correlations between projectile and target fragments and among projectile fragments are presented. The change of charge yield distribution with the violence of the collision has been shown. The present analysis contradicts theoretical calculations describing the inclusive charge yield distribution of fragments by a single process.
.
.
.
We used CR39 plastic nuclear track detectors (C12H18O7) in combination with automatic track measurement to determine total charge changing and partial cross sections for the production of fragments of chargeZ=6 andZ=7 in collisions of16O beam nuclei at energies of 60 GeV/nucleon and 200 GeV/nucleon in targets H, C, CR39, CH2, Al, Cu, Ag and Pb. Total charge changing cross sections due to the process of electromagnetic dissociation are calculated based on a theoretical model and found to be consistent with total and partial electromagnetic dissociation cross sections derived from this experiment. The energy dependence of pure nuclear fragmentation is investigated.
OBS = TOTAL CHARGE CHANGING CROSS SECTION.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
We used CR39 plastic nuclear track detectors (C12H18O7) in combination with automatic track measurement techniques to determine total charge changing and partial cross sections for the production of fragments of chargeZ F =6 toZ F =15 in collisions of32S beam nuclei at energies of 0.7, 1.2 and 200 GeV/nucleon in targets H, C, CR39, CH2, Al, Cu, Ag and Pb. By application of factorization rules measured partial cross sections are separated into pure nuclear and electromagnetic components. Total and partial cross sections for electromagnetic dissociation are compared with theoretical models. The energy dependence of pure nuclear cross sections is investigated.
No description provided.
NUCLEUS=12C 18H 7O.
NUCLEUS=18C 38H 7O.
2550 interactions of 12 C in emulsion at 4.5 A GeV / c have been used to study the properties of projectile fragments. The multiplicity and projected angular distributions of projectile fragments in different target groups have been studied. The production cross section of the reaction in which projectile 12 C breaks up into two Z = 3 fragments is found to be 6.6 × 10 −3 of the total inelastic cross section. The projected angular distributions of fragments exhibit features of limiting fragmentation. Statistically significant azimuthal correlations among fragments in the azimuthal plane indicates that the fragmenting nucleus gets a transverse momentum during the collision.
No description provided.
NUCLEUS IS CNO.
NUCLEUS IS AGBR.
Partial production cross sections of projectile alpha fragments produced in high-energy interactions of 16 O and 32 S at 200 GeV/n and 16 O at 60 GeV/n in emulsion are studied. Evidence of multiplicity scaling of such produced fragments is presented in the energy range 2–200 GeV/n for various projectiles.
No description provided.
No description provided.
No description provided.
A nuclear photographic emulsion method was used to study the charge-state, ionization, and angular characteristics of secondaries produced in inelastic interactions of 56 Fe nuclei at 1.8 GeV/nucleon with H, CNO, and AgBr nuclei. The data obtained are compared with the results of calculations made in terms of the Dubna version of the cascade evaporation model (DCM). The DCM has been shown to satisfactorily describe most of the interaction characteristics for two nuclei in the studied reactions. At the same time, quantitative differences are observed in some cases.
No description provided.
No description provided.
NUCLECS IS CNO.