No description provided.
No description provided.
No description provided.
The data on the total inelastic and partial cross sections in pNe interactions at 300 GeV are presented. It is found that the total cross section, σin(pNe)=356±13 mb, and multiplicity distributions of the number of negative and relativistic charged particles are in good agreement with predictions of a multiple-scattering model based on Glauber's approach. The multiplicity of negative particles obeys the Koba-Nielsen-Olesen (KNO) scaling, but it is observed that the KNO function depends on the atomic mass number of the target. From an analysis of the average multiplicities of secondary particles, it is shown that approximately 10 percent of the fast (p≳1.2 GeV) positive secondaries are protons, which are derived from the nucleons in the neon nucleus.
No description provided.
No description provided.
No description provided.
Measurements of the inelastic cross section in the proton+40Ar interaction at 1 GeV are reported. The result obtained, sigma in=570+or-70 mb, is compared with known experimental data and theoretical calculations.
No description provided.
None
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
None
NUCLEUS IS AVERAGE AIR NUCLEUS.
Based on an analysis of the extensive air shower data accumulated over the last ten years at Akeno Cosmic Ray Observatory, the value of the proton-air nuclei inelastic cross section (σinp−air) has been determined assuming the validity of quasi-Feynman scaling of particle production in the fragmentation region. The energy dependence of σinp−air can be represented as 290(E/1 TeV)0.052 mb in the energy interval 1016.2–1017.6 eV, where E is the incident proton energy. The total p-p cross section (σtotp−p), derived using the nuclear distribution function obtained from the shell model, increases with energy as 38.5+1.37 ln2(√s /10 GeV) mb.
No description provided.
Best fit to data gives SIG(PP) = 38.5 + 1.37*LN(SQRT(S)/10 GeV)**2.
It is shown that in interactions of protons at 200, 300, and 400 GeV, and negative pions at 300 GeV with emulsion nuclei, the scaling of the multiplicity of relativistic charged secondaries is valid and described by a linear function of the scaling variable, z.
No description provided.
No description provided.