We report differential cross sections for the production of D*(2010) produced in 500 GeV/c pi^- nucleon interactions from experiment E791 at Fermilab, as functions of Feynman-x (x_F) and transverse momentum squared (p_T^2). We also report the D* +/- charge asymmetry and spin-density matrix elements as functions of these variables. Investigation of the spin-density matrix elements shows no evidence of polarization. The average values of the spin alignment are \eta= 0.01 +- 0.02 and -0.01 +- 0.02 for leading and non-leading particles, respectively.
Acceptance corrected differential cross sections for D*+- production as a function of XL, Feynman X.
Acceptance corected differential cross sections for D*+- production as a function of PT**2.
Charge production asymmetry as a function of Feynman X.
We report measurements of D ∗± production in interactions between 350 GeV/ c π − particles and nuclei. Reconstruction of the decay D ∗+ → D 0 π + and charge conugate, with D 0 identified via its decays to K − π + and K − π − π + π + , has allowed isolation of a sample of 611 ± 28 D ∗± mesons, produced at positive x F . Assuming a linear A-dependence, the cross-section per nucleon in the region x F > 0 is measured to be 1.41 ± 0.10 ± 0.11 μ b for D ∗+ and 1.84 ± 0.12 ± 0.15 μ b for D ∗− . We present measurements of differential cross-sections with respect to x F and P t 2 , and compare data for D ∗± (vector-meson) production with data for production of charmed pseudoscalar mesons.
No description provided.
Data on D0, DBAR0, D+, and D- meson production are taken from previous publication of this collaboration (see NP B495, 3).
No description provided.
A leading charm meson is one with longitudinal momentum fraction, xF>0, whose light quark (or antiquark) is of the same type as one of the quarks in the beam particles. We report on the production asymmetry, A=[σ(leading-σ(nonleading)]/[σ(leading)+σ(nonleading)] as a function of xF. The data consist of 1500 fully reconstructed D± and D*± decays in Fermilab experiment E 769. We find a significant asymmetry for the production of charm quarks is not expected in perturbative quantum chromodynamics.
Asymmetry as function of XL.
Asymmetry as function of PT**2.
We present total and differential cross sections for charm mesons produced in 600 GeV/ c π - emulsion interactions. Fits to d 2 σ / dx F dp T 2 ∞ (1−| x F |) n exp (- bp T 2 ) for 676 electronically reconstructed D mesons with x F >0 give n =4.25±0.24 ( stat .)±0.23 ( syst .) and b =0.76±0.03±0.03 ( GeV / c ) -2 . The total inclusive D + and D 0 cross sections are σ ( π - N → D ± ; x F >0) = 8.66±0.46±1.96 μb nucleon and σ(π - N→D 0 D 0 ; x F >0)=22.05±1.37±4.82μb nucleonk, where a linear dependence on the mean atomic weight of the target is assumed. These results are compared to next-to-leading order QCD predictions.
Linear A-dependence. Different modes of the charm mesons detection were used (see text for detail). The differential cross section is fitted by the equation : D2(SIG)/D(XL)/D(PT**2) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).
Linear A-dependence.
Results are presented of a measurement of the production of D*+ (D*−) in 250-GeV/c π−N interactions. We observe 2.1±7.8 events corresponding to a charge-D* cross section σ(D*) of 0.4±1.5 μb/nucleon. When averaged with our previous measurement made at 200 GeV/c, the result is σ(D*)=2.3±1.0 μb/nucleon with (dσ/dx)‖x=0=4.6±2.0 μb.
THIS DATA FROM PREVIOUS PUBLICATION : PRL 46, 761 (1981).
No description provided.
No description provided.
We have searched for production of charmed mesons in the reaction π−+N→D*−+X, D*−→π−+D¯0, D¯0→K++π− at a beam momentum of 10.5 GeV/c. We measure the cross section times branching ratio to be 7±20 nb/nucleon.
No description provided.