Higher Moments of Net-proton Multiplicity Distributions at RHIC

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.Lett. 105 (2010) 022302, 2010.
Inspire Record 853304 DOI 10.17182/hepdata.73344

We report the first measurements of the kurtosis (\kappa), skewness (S) and variance (\sigma^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at \sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (\mu_B) between 200 - 20 MeV. Our measurements of the products \kappa \sigma^2 and S \sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the \sqrt(s_NN) dependence of \kappa \sigma^2. From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for \mu_B below 200 MeV.

40 data tables

$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 0-5 percent central collisions at midrapidity (| y |< 0.5).

$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 30-40 percent central collisions at midrapidity (| y |< 0.5).

$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 70-80 percent central collisions at midrapidity (| y |< 0.5).

More…

Measurements of 525-GeV pion interactions in emulsion

Cherry, M.L. ; Jones, W.V. ; Sengupta, K. ; et al.
Phys.Rev.D 50 (1994) 4272-4282, 1994.
Inspire Record 384760 DOI 10.17182/hepdata.22368

Measurements have been made of inclusive 525 GeV π− interactions in emulsion. The results are compared to proton-emulsion and lower energy pion-emulsion data. Average multiplicities of relativistic shower particles increase with increasing energy, although with a somewhat steeper slope above 60 GeV than at lower energies. The ratio 〈ns〉p/〈ns〉π∼1.1 over the energy range 60–525 GeV. The ratio of the dispersion in the multiplicity distribution to the average multiplicity is the same for proton and pion collisions in emulsion, and is independent of projectile energy. The shape of the shower particle multiplicity distribution does not vary significantly with energy, and KNO scaling appears to hold over the energy range 60–525 GeV. The shower particle pseudorapidity distributions are independent of the beam energy in the target and projectile fragmentation regions, and both the pseudorapidity and multiplicity distributions agree reasonably well with the fritiof model predictions for 525 GeV pions. The dependence of the shower particle multiplicity 〈ns〉 on the number of heavy tracks Nh appraoches saturation as the total shower particle energy becomes a significant fraction of √s , and the pseudorapidity distributions shift toward smaller 〈η〉 with increasing numbers of grey and black tracks at 525 GeV. Neither the average number 〈Nh〉 nor the multiplicity distributions of the heavily ionizing tracks vary significantly with energy, and the normalized angular distributions of grey and black tracks are independent of the type of projectile or projectile energy.

15 data tables

NUCLEUS means average nuclei of BR-2 emulsion.

NUCLEUS means average nuclei of BR-2 emulsion.

NUCLEUS means average nuclei of BR-2 emulsion.

More…

Sigma- nucleus interactions in emulsion at 350-GeV

Szarska, M. ; Wilczynski, H. ; Wolter, W. ; et al.
Phys.Rev.D 47 (1993) 784-790, 1993.
Inspire Record 33307 DOI 10.17182/hepdata.22740

Experimental data on multiplicities and angular distributions of heavy ionizing and shower particles in inelastic interactions of 350 GeV Σ− hyperons in nuclear emulsion are presented. The data are compared with the results of other experiments on proton and pion interactions in emulsion at energies of 60-800 GeV. We observe no significant differences in the global characteristics of strange hyperon interactions relative to nonstrange baryon interactions at equivalent energies, other than those attributable to the differing cross sections.

3 data tables

No description provided.

No description provided.

No description provided.


A Study of charged particle multiplicities in hadronic decays of the Z0

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 53 (1992) 539-554, 1992.
Inspire Record 321190 DOI 10.17182/hepdata.14774

We present an analysis of multiplicity distributions of charged particles produced inZ0 hadronic decays. The results are based on the analysis of 82941 events collected within 100 MeV of theZ0 peak energy with the OPAL detector at LEP. The charged particle multiplicity distribution, corrected for initial-state radiation and for detector acceptance and resolution, was found to have a mean 〈nch〉=21.40±0.02(stat.)±0.43(syst.) and a dispersionD=6.49±0.02(stat.)±0.20(syst.). The shape is well described by the Lognormal and Gamma distributions. A negative binomial parameterisation was found to describe the shape of the multiplicity distribution less well. A comparison with results obtained at lower energies confirms the validity of KNO(-G) scaling up to LEP energies. A separate analysis of events with low sphericity, typically associated with two-jet final states, shows the presence of features expected for models based on a stochastic production mechanism for particles. In all cases, the features observed in the data are well described by the Lund parton shower model JETSET.

8 data tables

Distribution for whole event. The data at multiplicites 2 and 4 come from Monte Carlo data.

Distribution for single hemisphere.

Distribution for whole event. The data at multiplicites 2 and 4 come from Monte Carlo data.. Contributions from K0S and LAMBDA decays have been subtracted.

More…

Rescattering in neutrino / anti-neutrino deuteron reactions

Tenner, A.G. ; Nikolaev, Nikolai N. ;
Nuovo Cim.A 105 (1992) 1001-1024, 1992.
Inspire Record 318863 DOI 10.17182/hepdata.37840

A study is made of the rescattering phenomenon in deuterons by means of an analysis of ν/xxx;-d interactions in the WA25 (BEBC) experiment at CERN. Experimental data are presented on the rescattering fraction, its energy and multiplicity dependence, on the rapidity spectra of specific particles, on the multiplicity properties of rescatter interactions, and on strange-particle production. Rescattering offers an opportunity to study the behaviour of the produced particlein statu nascendi. The experimental phenomena are discussed in the framework of the formation time formalism. The proper time of hadronization τf is evaluated to be ∼0.5fm/c. A possible reduction of formation time in low-multiplicity events is discussed. Some differences between neutrino and hadron-induced rescattering in deuterons are attributed to the constituent quark structure of pions and nucleons. The experimental results are relevant for the issue of quark-gluon plasma formation in heavy-ion collisions.

18 data tables

ODD NUMBER OF HADRONS.

ODD NUMBER OF HADRONS.

ODD NUMBER OF HADRONS.

More…

Intermittency in hadronic decays of the Z0

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 262 (1991) 351-361, 1991.
Inspire Record 314631 DOI 10.17182/hepdata.29397

A factorial moment analysis has been performed on the differential multiplicity distributions of hadronic final states of the Z 0 recorded with the OPAL detector at LEP. The moments of the one-dimensional rapidity and the two-dimensional rapidity versus azimuthal angle distributions are found to exhibit “intermittent” behaviour attributable to the jet structure of the events. The moments are reproduced by both parton shower and matrix element QCD based hadronisation models. No evidence for fluctuations beyond those attributable to jet structure is observed.

3 data tables

Corrected factorial moments of the rapidity distribution with respect to the sphericity axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.

Corrected factorial moments of the rapidity distribution with respect to the electron beam axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.

Corrected factorial moments of the rapidity (with respect to the sphericityaxis) versus PHI distribution. For each point the NUMBER of bins are constructe d from equal numbers of YRAP and PHI bins. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.


Charged hadron multiplicities in e+ e- annihilations at s**(1/2) = 50-GeV - 61.4-GeV

The AMY collaboration Zheng, H.W. ; Perez, P. ; Auchincloss, Priscilla S. ; et al.
Phys.Rev.D 42 (1990) 737-747, 1990.
Inspire Record 295160 DOI 10.17182/hepdata.22922

We present the charged-particle multiplicity distributions for e+e− annihilation at center-of-mass energies from 50 to 61.4 GeV. The results are based on a data sample corresponding to a total integrated luminosity of 30 pb−1 obtained with the AMY detector at the KEK storage ring TRISTAN. The charged-particle multiplicity distributions deviate significantly from the modified Poisson and pair Poisson distributions, but follow Koba-Nielsen-Olesen scaling and are well reproduced by the LUND parton-shower model.

2 data tables

Fully corrected charged particle multiplicity distributions. Errors for n=2 and 4 are systematic only since these were derived using the LUND 6.3 Monte Carlo normalized to the observations at higher n values.

No description provided.


Cumulative production of pi- mesons in pi C interactions at 40-GeV/c

Baatar, Ts. ; Batsaikhan, Ts. ; Ivanovskaya, I.A. ; et al.
Sov.J.Nucl.Phys. 52 (1990) 504-508, 1990.
Inspire Record 299082 DOI 10.17182/hepdata.38727

None

7 data tables

HERE XL IS CUMULATIVE NUMBER, DEFINED AS FOLLOWS: (E-PL)/M(NUCLEON). THE DISTRIBUTION (1/N)*D(N)/D(XL) WAS FITTED BY THE SUM: CONST(1)* EXP(-SLOPE(1)*XL)+CONST(2)*EXP(-SLOPE(2)*XL).

HERE XL IS CUMULATIVE NUMBER, DEFINED AS FOLLOWS: (E-PL)/M(NUCLEON). THE DISTRIBUTION (XL/N)*D(N)/D(XL) WAS FITTED BY THE SUM: CONST(1)* EXP(-SLOPE(1)*XL)+CONST(2)*EXP(-SLOPE(2)*XL).

HERE XL IS CUMULATIVE NUMBER, DEFINED AS FOLLOWS: (E-PL)/M(NUCLEON).

More…

Inclusive Characteristics of $\pi^-$ Mesons Produced in $p$ C and $p$ Ta Interactions at 10-{GeV}/$c$ Proton Momentum

Armutliisky, D.D. ; Akhababian, N.O. ; Grishin, V.G. ; et al.
Sov.J.Nucl.Phys. 48 (1988) 101-107, 1988.
Inspire Record 251090 DOI 10.17182/hepdata.9502

None

8 data tables

No description provided.

No description provided.

MOMENTUM SPECTRA IN THE WINDOW P=0.1-6.0 HAVE BEEN FITTED BY THE FORMULA: (1/N)*D(N)/D(P)=CONST(Q=1)*EXP(-SLOPE(Q=1)*P)+CONST(Q=2)*EXP (-SLOPE(Q=2)*P).

More…

CROSS-SECTION OF PARTICLE DIFFRACTIVE PRODUCTION IN ANTI-P P INTERACTIONS AT 32-GEV/C. (IN RUSSIAN)

Bogolyubsky, M.Yu. ; Borovikov, A.A. ; Bravina, L.V. ; et al.
Yad.Fiz. 46 (1987) 522-530, 1987.
Inspire Record 255691 DOI 10.17182/hepdata.2402

None

8 data tables

No description provided.

No description provided.

No description provided.

More…