Protons of the internal circulating beam of the Bevatron were scattered in a polyethylene target. Both scattered and recoil protons were detected by scintillation counters at angles which define elastic proton-proton events. An internal counter was located within a few inches of the beam to permit measurements at laboratory scattering angles as low as 2°. Absolute values are based on the calibration of the induction electrode that monitors the circulating beam. Total elastic cross sections obtained by integrating the differential spectra are 17, 10, and 8 mb at 2.24, 4.40, and 6.15 Bev, respectively. The experimental angular distributions are consistent with the prediction of a simple optical model with a complex index of refraction at short range.
'ALL'.
The scattering of 139.5-Mev electrons in hydrogen gas at one-atmosphere pressure has been investigated using photographic emulsions. The beam of electrons from the Stanford Mark III linear accelerator, collimated to a diameter of 116 in., passed through the gas and was collected in a lead Faraday cup. Ilford C−2 emulsions, 50 μ thick, which were arranged symmetrically about the beam, detected the recoil protons. Measurements of the recoil angle γ and the range in the emulsion were made on the proton tracks. Only those events were accepted whose measured range and angle correlated within ±2.33 standard deviations of the distribution about the elastic kinematic range-angle curve calculated from the multiple scattering in the emulsion and the uncertainty in angle measurement. A total of 2350 tracks have been tabulated in the angular interval 54°<~γ<~78° giving a statistical error matching the systematic errors in plate geometry, beam integration, and track measurement. The results are compared with the Mott cross section integrated over the interval. The theoretical cross section was corrected for (a) proton recoil, (b) the proton magnetic moment, (c) the finite size of the proton's charge and magnetic moment, (d) the radiative correction, including the effect on the cross section of emission of real photons contributing to the observed recoil protons. The result is σexpσtheor=0.988±0.021 (probableerror), using a proton radius of 7.7×10−14 cm, and including a 2.74% radiative correction; the result is not sensitive to the choice of proton radius.
The radiative corrections were not applied in the calculation of the cross sections from the experimental data. Thus the cross sections given in the table are experiment-dependent because the radiative correction depends on the resolution of an experiment. The errors given in the table include systematic and statistical errors combined quadratically. The statistical error varies from 3.5% at 77 DEG to 23.6% at 55 DEG.
These cross sections were recalculated by ZOV from the experimental ones using a radiative correction (see fig.15). Thus they may be considered as an experiment-independent cross sections of a 'pure' process E- P --> E- P.
None
No description provided.
The structure and size of the proton have been studied by means of high-energy electron scattering. The elastic scattering of electrons from protons in polyethylene has been investigated at the following energies in the laboratory system: 200, 300, 400, 500, and 550 Mev. The range of laboratory angles examined has been 30° to 135°. At the largest angles and the highest energy, the cross section for scattering shows a deviation below that expected from a point proton by a factor of about nine. The magnitude and variation with angle of the deviations determine a structure factor for the proton, and thereby determine the size and shape of the charge and magnetic-moment distributions within the proton. An interpretation, consistent at all energies and angles and agreeing with earlier results from this laboratory, fixes the rms radius at (0.77±0.10) ×10−13 cm for each of the charge and moment distributions. The shape of the density function is not far from a Gaussian with rms radius 0.70×10−13 cm or an exponential with rms radius 0.80×10−13 cm. An equivalent interpretation of the experiments would ascribe the apparent size to a breakdown of the Coulomb law and the conventional theory of electromagnetism.
In the experiment just relative cross sections were measured. The absolute values were ascribed at each energy after multiplying experimental data by a co nstant factor to obtain the best fit with theory assuming the diffuse proton model with charge and magnetic moment rms radii 0.08 fm.. The values in the table are extracted from the graphs (see figs. 6 - 9) byZOV.
Interactions initiated by 3-Bev protons of the Brookhaven Cosmotron were studied by photoemulsion technique. With appropriate criteria, 115 events are attributed to interactions of the incident beam protons with hydrogen nuclei (∼55%) and with bound protons of other nuclei (∼45%). A detailed analysis allowed the subdivision of the 115 events in categories, according to the number of π mesons (N>~0) produced in the collision. The ratio of elastic scattering to the total number of events was estimated to be σelσtotal=0.20−0.07+0.04. The observed cross section for pure elastic scattering is σel=8.9±1.0 mb. The percentages of single, double, triple, and quadruple π-meson production are respectively: 34−20+22; 35.6−23+20; 9.6−4+6; ∼1.0+3.5. Among the 20 most probable cases of single π-meson production—the estimated ratio of π+ to π0 is σπ+σπ0=5.3−1.4+0.3. The experimental results are not in agreement with the Fermi statistical-model theory (in particular the lower limit for the experimental ratio of triple to single production is given by σ3σ1>∼110 in contrast with the predicted ratio σ3σ1=167) but are not inconsistent with the Peaslee excited-state-model theory.
No description provided.
None
No description provided.