We present results of an analysis of two-prong events for elastic scattering and single-pion production in K−p interactions at 5.5 GeVc. The resonance parameters for the charged and neutral K*(890) and K*(1420) are determined and the observed production and decay properties of the charged and neutral K*(890) are compared with the theoretical predictions of an absorptive one-particle-exchange model and a Regge model. The K*(1420) differential cross section and density-matrix elements are presented and the question of whether more than one resonance exists in this mass range is considered. A search for resonance effects at Kπ mass beyond 1500 MeV is made. In particular, the recently reported state at 1800 MeV is discussed. A B5-model analysis of the reaction K−p→K¯0π−p is also presented.
NORMALIZED TO SIG(K- P --> ANYTHING) OF 24.3 +- 0.8 MB.
FORWARD CROSS SECTION OPTICAL POINT FROM TWO PARAMETER EXPONENTIAL FIT OVER 0.12 < -T < 0.68 GEV**2.
No description provided.
We present data from a spark-chamber study of K+p elastic scattering between 432 and 939 MeV/c, over the range −0.6<cosθc.m.<+0.7. With measurements at 13 momenta, and between 2000 events at the lowest momentum and 5000 events at the highest momentum, there is a major improvement over previous data. The elastic cross sections deduced from the differential cross sections are almost independent of momentum through the range covered. The data are inconsistent with counter measurements of the total cross section which suggest a sharp shoulder in the cross section at about 700 MeV/c.
No description provided.
No description provided.
No description provided.
We present results of measurements of the differential cross sections for the following elastic-scattering reactions: (i) π + p at 5.2 and 7.0 GeV/ c in the range −1 < u < 0.02 (GeV/ c ) 2 , (ii) π − p at 7.0 GeV/ c in the range −0.7 < u < 0.05 (GeV/ c ) 2 , (iii) K + p at 5.2 and 7.0 GeV/ c in the ranges −1 < t < −0.01 (GeV/ c ) 2 and −1 < u < 0 (GeV/ c ) 2 , and K − p at 7.0 GeV/ c in the range −1 < u < 0 (GeV/ c ) 2 .
No description provided.
No description provided.
SIDE GEOMETRY.
The K − p differential and total elastic cross-sections have been measured at 14.25 GeV/ c . The results have been compared with various Regge models.
No description provided.
Total and differential cross sections are presented for the reactions K − p → K − p and K − p → K o n at 13 points in the c.m. energy range 1915–2168 MeV. An energy-dependent partial-wave analysis is carried out on these data together with the polarisation measurements of Daum et al. [1] and the total cross section measurements [2] within this energy range. The well known Σ(1915), Σ(2030) and Λ(2100) are observed and their resonance parameters measured. Structure is also found in the D 05 and F 07 waves. An SU(3) analysis of the 5 2 + octet, 7 2 + decuplet and 7 2 − singlet gives generally good agreement between theory and experiment except that the elasticity of the Σ(1915) is experimentally rather larger than predicted.
No description provided.
No description provided.
DETERMINED BY NORMALIZING AT ZERO DEG TO TOTAL CROSS SECTIONS VIA THE OPTICAL THEOREM.
Polarization and differential cross-section data for elastic scattering of negative kaons on polarized protons between 865 and 1330 MeV/ c are presented. Comparisons are made with predictions given by published energy dependent phase-shift analyses. The Legendre expansion coefficients characterizing the polarization distributions show remarkable structures resulting from excitation of Λ- and Σ-resonances. An analysis of the elastic and charge-exchange data in this region of momenta supports the assignments of J P = 3 2 + for the Λ(1870) resonance. The occurence of zero crossings in the polarization data is discussed.
No description provided.
No description provided.
No description provided.
Results are presented on elastic scattering of 10.1 GeV/ c K − mesons on protons, based on a sample of 16 261 kinematically-fitted bubble-chamber events. The differential cross section is given over the | t |- range of 0.06 to 2.5 GeV 2 and is fitted with the expressions a e bt , A e Bt + Ct 2 and ( P e Qt + Re St ) over various intervals of t . The results are compared with those of other experiments at nearby energies. Upper limits of | α | < 0.28 and σ B < 0.4 μ b (both at a 90% confidence level) are given for the ratio of real to imaginary part of the forward-scattering amplitude and the backward-elastic-scattering cross section, respectively.
No description provided.
ERROR INCLUDES STATISTICAL ERROR AND ERROR IN TOTAL CROSS SECTION USED FOR NORMALIZATION. EXTRAPOLATION OF D(SIG)/DT TO T=0 PROVIDES ABOUT 0.5 PCT UNCERTAINTY.
NO BACKWARD EVENTS OBSERVED. LARGEST ANGLE EVENT SEEN WAS AT 64 DEG (-T = 2.33 GEV**2).
Polarization and differential cross-section data at 16 momenta between 0.86 and 2.74 GeV/ c are presented. (Preliminary data on some of the momenta have been published earlier.) In an energy-independent phase-shift analysis from threshold up to 2.5 GeV/ c , resonant-like as well as non-resonant solutions are found for the P 3 wave. An helicity flip-non-flip decomposition of the partial waves partly supports the indications found in the analyses of other reactions that the pomeron is built up mainly from s -channel helicity non-flip contributions.
No description provided.
No description provided.
No description provided.
The polarization parameter for K + p elastic scattering has been measured at 1.60, 1.80, 2.11 and 3.31 GeV/ c incident momenta over the entire angular range with an emphasis on the backward region. The results in the extreme backward region appear to be small and consistent with zero.
No description provided.
Results on polarization in K − p, K + p and p̄p forward elastic scattering at 10 and 14 GeV/ c are presented.
No description provided.
No description provided.
No description provided.