This paper reports measurements of the differential cross sections for the reactions e+e−→e+e− (Bhabha scattering) and e+e−→γγ (γ-pair production). The reactions are studied at a center-of-mass energy of 29 GeV and in the polar-angular region ‖costheta‖<0.55. A direct cross-section comparison between these two reactions provides a sensitive test of the predictions of quantum electrodynamics (QED) to order α3. When the ratio of γ-pair to Bhabha experimental cross sections, integrated over ‖costheta‖<0.55, is divided by the same ratio predicted from α3 QED theory, the result is 1.007±0.009±0.008. The 95%-confidence limits on the QED-cutoff parameters are Λ+>154 GeV and Λ−>220 GeV for Bhabha scattering, and Λ+>59 GeV and Λ−>59 GeV for γ-pair production.
No description provided.
Proton-deuteron elastic scattering has been measured in the four-momentum transfer squared region 0.013<|t|<0.14 (GeV/c)2 and for incident proton beam momenta from 50 to 400 GeV/c. The data can be fitted with the Bethe interference formula. We observe shrinkage of the diffraction cone with increasing energy equal to (0.94±0.04)ln(s1 GeV2) (GeV/c)−2. This shrinkage is greater than that observed in pp elastic scattering. The ratio of the elastic to the total cross section is approximately 0.1 and independent of energy above ∼ 150 GeV. In order to extract information on pn scattering we fit our data using the Glauber approach and a form factor which is the sum of exponentials. The values we obtain for the slope parameter in pn scattering are sensitive to the details of the inelastic double-scattering term.
.
.
.
None
FROM LEGENDRE POLYNOMIAL FIT TO D(SIG)/DOMEGA, USING VALUE AT THETA = 0 DEG OBTAINED BY ADDITION OF THE PI+ P AND PI- P FORWARD SCATTERING AMPLITUDES GIVEN BY DISPERSION RELATIONS.
No description provided.
No description provided.
We have studied antiproton-deuteron elastic scattering between 1.60 and 2.00 GeV/c incident momenta. The differential cross sections may be characterized by a very steep forward peak (with b∼43 GeV−2) and a prominent break near −t∼0.2 GeV2. The results are used to test the validity of Glauber's multiple-scattering theory. Within the experimental range of measurements (−t between 0.028 and 0.46 GeV2), the theory provides a good qualitative description of the data.
No description provided.
No description provided.
A high-precision measurement of the differential cross section for Bhabha scattering (e+e−→e+e−) is presented. The measurement was performed with the MAC detector at the PEP storage ring of the Stanford Linear Accelerator Center, at a center-of-mass energy of 29 GeV. Effects due to electroweak interference are observed and agree well with the predictions of the Glashow-Salam-Weinberg model. The agreement between the data and the electroweak prediction rules out substructure of the electron up to mass scales of 1 TeV.
Error contains both statistics and systematics.
We have measured the p¯n differential elastic cross section for −t≥0.15 (GeV/c)2. We compare our data with existing data from p¯p and np elastic scattering experiments in this energy region. Our data show a dip in the cross section at −t≃0.45 (GeV/c)2 and a secondary maximum at −t≃0.7 (GeV/c)2. We see no evidence for backward peaking in p¯n elastic scattering at this energy. Evidence is presented for I=1, t-channel exchange in N¯N scattering.
No description provided.
No description provided.
None
'1'. '2'.
No description provided.
No description provided.
None
No description provided.
No description provided.
None
POLARIZED PROTON TARGET.
POLARIZED PROTON TARGET.
POLARIZED PROTON TARGET.
About 45000 interactions of antiprotons of kinetic energy between 57 and 170 MeV have been measured in a deuterium bubble chamber. Total and annihilation cross-sections have been determined at 9 values of the antiproton energy together with the differential crosssection dσ/dt for scattering events. In spite of the peculiar behaviour of the deuteron target at these low energies a reliable measure of the antiproton-neutron annihilation cross-section has been obtained.
INELASTIC (ANNILATION + CHARGE EXCHANGE), SCATTERING (ELASTIC + INELASTIC) AND TOTAL CROSS SECTIONS. AUTHORS ALSO GIVE TOPOLOGICAL DECOMPOSITION OF THESE CROSS SECTIONS.
SCATTERED ANTIPROTON ANGULAR DISTRIBUTION. THE OPTICAL POINT AT T=0 IS CALCULATED FROM THE TOTAL CROSS SECTION. SEPARATION INTO SCATTERING ON PROTONS AND ON NEUTRONS IS IMPOSSIBLE.