We present measurements of J/psi yields in d+Au collisions at sqrt(s_NN) = 200 GeV recorded by the PHENIX experiment and compare with yields in p+p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/psi rapidity (-2.2 < y < 2.4) with high statistical precision and are compared with two theoretical models: one with nuclear shadowing combined with final state breakup and one with coherent gluon saturation effects. To remove model dependent systematic uncertainties we also compare the data to a simple geometric model. We find that calculations where the nuclear modification is linear or exponential in the density weighted longitudinal thickness are difficult to reconcile with the forward rapidity data.
$J/\psi$ $B_{ll}$ $dN/dy$ in $p+p$ collisions as a function of rapidity. (All uncertainties are absolute. The sys. A uncertainty includes both the statistical uncertainty and the point-to-point uncorrelated systematic, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
$J/\psi$ $B_{ll}$ $dN/dy$ in $d$+Au collisions as a function of rapidity. The $d$+Au yields are divided by the average number of nucleon-nucleon collisions $\langle N_{coll}$(0-100%)$\rangle$ = 7.6. (All uncertainties are absolute. The sys. A uncertainty includes both the statistical uncertainty and the point-to-point uncorrelated systematic, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
Mid rapidity $d$+Au —> $e^+e^-$ $J/\psi$ invariant yields at $\sqrt{s}$=200 GeV. (All uncertainties are absolute. The sys. A uncertainty includes both the statistical uncertainty and the point-to-point uncorrelated systematic, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
Identified charged pion, kaon, and proton spectra are used to explore the system size dependence of bulk freeze-out properties in Cu+Cu collisions at $\sqrt{s_{NN}}$=200 and 62.4 GeV. The data are studied with hydrodynamically-motivated Blast-wave and statistical model frameworks in order to characterize the freeze-out properties of the system. The dependence of freeze-out parameters on beam energy and collision centrality is discussed. Using the existing results from Au+Au and $pp$ collisions, the dependence of freeze-out parameters on the system size is also explored. This multi-dimensional systematic study furthers our understanding of the QCD phase diagram revealing the importance of the initial geometrical overlap of the colliding ions. The analysis of Cu+Cu collisions, which expands the system size dependence studies from Au+Au data with detailed measurements in the smaller system, shows that the bulk freeze-out properties of charged particles studied here scale with the total charged particle multiplicity at mid-rapidity, suggesting the relevance of initial state effects.
Negatively charged pion spectra from Cu+Cu collisions 200 GeV as a function of pT for different centralities.
Negatively charged pion spectra from Cu+Cu collisions 62.4 GeV as a function of pT for different centralities.
Negatively charged kaon spectra from Cu+Cu collisions 200 GeV as a function of pT for different centralities.
The gp-->etap reaction has been measured with the Crystal Ball and TAPS multiphoton spectrometers in the energy range from the production threshold of 707 MeV to 1.4 GeV (1.49 =< W >= 1.87 GeV). Bremsstrahlung photons produced by the 1.5-GeV electron beam of the Mainz Microtron MAMI-C and momentum analyzed by the Glasgow Tagging Spectrometer were used for the eta-meson production. Our accumulation of 3.8 x 10^6 gp-->etap-->3pi0p-->6gp events allows a detailed study of the reaction dynamics. The gp-->etap differential cross sections were determined for 120 energy bins and the full range of the production angles. Our data show a dip near W = 1680 MeV in the total cross section caused by a substantial dip in eta production at forward angles. The data are compared to predictions of previous SAID and MAID partial-wave analyses and to thelatest SAID and MAID fits that have included our data.
Total cross section for the reaction GAMMA P --> ETA P.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 710.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 714.5 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
We have measured inclusive data on $K^+$-meson production in $pp$ collisions at COSY J\"ulich close to the hyperon production threshold and determined the hyperon-nucleon invariant mass spectra. The spectra were decomposed into three parts: $\Lambda p$, $\Sigma^0p$ and $\Sigma^+n$. The cross section for the $\Sigma^+n$ channel was found to be much smaller than a previous measurement in that excess energy region. The data together with previous results at higher energies are compatible with a phase space dependence.
Total cross section for P P --> K+ SIGMA+ N. Errors are combined statistics and systematics.
Deduced total cross section for P P --> K+ P LAMBDA.
Deduced total cross section for P P --> K+ SIGMA0 P.
Exclusive measurements of the $pp \to pp\pi^0\pi^0$ reaction have been performed at CELSIUS/WASA at energies from threshold up to $T_p$ = 1.3 GeV. Total and differential cross sections have been obtained. Here we concentrate on energies $T_p \ge$ 1 GeV, where the $\Delta\Delta$ excitation becomes the leading process. No evidence is found for a significant ABC effect beyond that given by the conventional $t$-channel $\Delta\Delta$ excitation. This holds also for the double-pionic fusion to the quasibound $^2$He. The data are compared to model predictions, which are based on both pion and $\rho$ exchange. Total and differential cross sections are at variance with these predictions and call for a profound modification of the $\rho$-exchange. A phenomenological modification allowing only a small $\rho$ exchange contribution leads to a quantitative description of the data.
Cross section taken from an earlier CELSIUS publication (PL B679(2009)30 - arXiv:0903.2087).
PI0_PI0 invariant mass distribution at an incident kinetic energy of 1000 MeV.
PI0_PI0 invariant mass distribution at an incident kinetic energy of 1100 MeV.
The contribution of $B$ meson decays to non-photonic electrons, which are mainly produced by the semi-leptonic decays of heavy flavor mesons, in $p+p$ collisions at $\sqrt{s} =$ 200 GeV has been measured using azimuthal correlations between non-photonic electrons and hadrons. The extracted $B$ decay contribution is approximately 50% at a transverse momentum of $p_{T} \geq 5$ GeV/$c$. These measurements constrain the nuclear modification factor for electrons from $B$ and $D$ meson decays. The result indicates that $B$ meson production in heavy ion collisions is also suppressed at high $p_{T}$.
Distributions of the azimuthal angle between nonphotonic electrons and charged hadrons normalized per nonphotonic electron trigger. The trigger electron has (top) $2.5 < p_{T} < 3.5$ GeV/$c$ and (bottom) $5.5 < p_{T} < 6.5$ GeV/$c$. The curves represent PYTHIA calculations for $D$ (dotted curve) and $B$ (dashed curve) decays. The fit result is shown as the black solid curve.
(a) Background-subtracted invariant mass distribution of $K$ pairs requiring at least one nonphotonic electron trigger in the event. The solid line is a Gaussian fit to the data near the peak region. (b) Distribution of the azimuthal angle between nonphotonic electron (positron) trigger particles and $D^{0}$ ($\bar{D}^{0}$). The solid (dashed) line is a fit of the correlation function from PYTHIA (MC$@$NLO) simulations to the data points.
Transverse momentum dependence of the relative contribution from $B$ mesons ($r_{B}$) to the nonphotonic electron yields. Error bars are statistical and brackets are systematic uncertainties. The solid curve is the FONLL calculation [14]. Theoretical uncertainties are indicated by the dashed curves.
High-statistics measurements of differential cross sections and recoil polarizations for the reaction $\gamma p \rightarrow K^+ \Sigma^0$ have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies ($\sqrt{s}$) from 1.69 to 2.84 GeV, with an extensive coverage in the $K^+$ production angle. Independent measurements were made using the $K^{+}p\pi^{-}$($\gamma$) and $K^{+}p$($\pi^-, \gamma$) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in $\sqrt{s}$ coverage. Above $\sqrt{s} \approx 2.5$ GeV, $t$- and $u$-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization ($P_\Sigma$) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that $P_\Sigma$ is of the same magnitude but opposite sign as $P_\Lambda$, in agreement with the static SU(6) quark model prediction of $P_\Sigma \approx -P_\Lambda$. This expectation is violated in some mid- and backward-angle kinematic regimes, where $P_\Sigma$ and $P_\Lambda$ are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.69 to 1.7 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.7 to 1.71 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.71 to 1.72 GeV.
The LEPS/SPring-8 experiment made a comprehensive measurement of the spin-density matrix elements for $\gamma p \to \phi p$, $\gamma d \to \phi p n$ and $\gamma d \to \phi d$ at forward production angles. A linearly polarized photon beam at $E_{\gamma}$=1.6-2.4 GeV was used for the production of $\phi$ mesons. The natural-parity Pomeron exchange processes remains dominant nearthreshold. The unnatural-parity processes of pseudoscalar exchange is visible in the production from nucleons but is greatly reduced in the coherent production from deuterons. There is no strong $E_{\gamma}$-dependence, but some dependence on momentum-transfer. A small but finite value of the spin-density matrix elements reflecting helicity-nonconserving amplitudes in the $t$-channel is observed.
Measurements of the spin density matrix element RHO(JJ=0,MM=00) for the GAMMA P --> PHI P reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RE(RHO(JJ=0,MM=10)) for the GAMMA P --> PHI P reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=1-1) for the GAMMA P --> PHI P reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Correlations of charged hadrons of 1 < pT < 10 GeV/c with high pT direct photons and pi^ 0 mesons in the range 5
Away-side charged hadron yield per π 0 trigger as a function of xE, which is equivalent to zT in the collinear limit cos(∆φ) = 1 & Away-side isolated direct photon trigger as a function of xE, which is equivalent to zT in the collinear limit cos(∆φ) = 1.
Away-side charged hadron yield per π 0 trigger as a function of xE, which is equivalent to zT in the collinear limit cos(∆φ) = 1 & Away-side isolated direct photon trigger as a function of xE, which is equivalent to zT in the collinear limit cos(∆φ) = 1.
Away-side charged hadron yield per π 0 trigger as a function of xE, which is equivalent to zT in the collinear limit cos(∆φ) = 1 & Away-side isolated direct photon trigger as a function of xE, which is equivalent to zT in the collinear limit cos(∆φ) = 1.
We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at \sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 \to K+ pi- and \bar{K*0} \to K-pi+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum,
The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV after mixed-event background subtraction.
The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ =62.4 GeV after mixed-event background subtraction.
The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ =200 GeV after mixed-event background subtraction.