We report measurements made with the CLEO detector at the Cornell Electron Storage Ring (CESR) of the total cross section for e+e−→hadrons at the ϒ(1S), ϒ(2S), and ϒ(3S), and in the nearby nonresonant continuum. We find R=3.77±0.06 (statistical) ± 0.24 (systematic) for the ratio of the nonresonant hadronic cross section to the cross section for muon-pair production at a center-of-mass total energy W=10.4 GeV. For the leptonic decay widths Γee of the ϒ(1S), ϒ(2S), and ϒ(3S) we obtain 1.30±0.05±0.08, 0.52±0.03±0.04, and 0.42±0.04±0.03 keV, respectively.
No description provided.
None
NUMBER OF K0S PER EVENT IN THE UPSILON REGION.
NUMBER OF ANTI(LAMBDA)S PER EVENT IN THE UPSILON REGION. FOR UPSI(4S) RESULTS SEE 'A'.
DSIG/DP DISTRIBUTIONS FOR K0 AND (ANTI) LAMBDA PRODUCTION AT THE UPSILON RESONANCES.
None
No description provided.
NUMBERS ACTUALLY GIVEN IN GREEN 83 (CORNELL CONF, RED = 1291).
NUMBERS ACTUALLY GIVEN IN GREEN 83 (CORNELL CONF, RED = 1291). FOR UPSI(4S) PROTON PRODUCTION SEE ALAM 83, PRL 51/1143/83, RED = 1271.
The total cross section for the process e + e − → hadrons has been measured in the CM energy range between 12.0 and 36.4 GeV using the JADE detector with a typical systematic error of ±3%. The ratio R( σ( ee → hadrons ) σ pt ) is found to be constant over this range with an average value of 3.97 ± 0.05 (statistical and point-to-point systematic error) ± 0.10 (normalization error). The data were compared with the standard electro-weak interaction model including QCD corrections.
ERRORS ARE STATISTICAL PLUS POINT TO POINT SYSTEMATICS. THERE IS AN ADDITIONAL 2.4 PCT OVERALL NORMALIZATION ERROR.
No description provided.
The branching fraction for the decay of the ϒ(1S) into τ paris has been measured to be (3.4±0.4±0.4)%. This result agrees with the previously measured branching ratio of the decay into muon pairs.
VISIBLE CROSS SECTIONS IN THE PEAK.
No description provided.
Using the CLEO detector at the Cornell Electron Storage Ring, the authors have measured the leptonic branching fractions, Bμμ, of the ϒ(1S), ϒ(2S), and ϒ(3S) to be 2.7±0.3±0.3%, 1.9±1.3±0.5%, and 3.3±1.3±0.7%, respectively. Combining these values of Bμμ with previous measurements of the leptonic widths of these resonances, the authors find the total widths of the ϒ(1S), ϒ(2S), and ϒ(3S) to be 48±4±4, 27±17±6, and 13±4±3 keV.
No description provided.
With a PETRA energy scan in ≤30-MeV steps, the continuum production of open top quark up to 38.54 GeV is excluded. Over regions of energy scan from 29.90 to 38.63 GeV limits are set on the product of hadronic branching ratio and electronic width BhΓee for toponium to be less than 2.0 keV at the 95% confidence level. By a search for flavor-changing neutral currents in b decay, models without a top quark are excluded.
MEASUREMENT OF R IN ENERGY SCAN FROM SQRT(S) = 29.9 TO 3.146 AND 33.0 TO 36.72.
MEASUREMENT OF R IN THE RANGE SQRT(S) 37 TO 38.63 GEV.
THRUST DISTRIBUTION FOR EVENTS IN THE RANGE SQRT(S) 37.94 TO 38.63 AND 38.54 TO 38.63.
The rationR=σ(e+e−→hadrons)/σ(e+e−→ µ+ µ−) was measured with the LENA detector at DORIS in a scan between 7.40 and 7.48 GeV and between 8.67 and 9.43 GeV center of mass energies. Corrected for QED radiative effects,R is found to be constant with an average value ofR=3.37 ±0.06stat±0.23syst. No narrow resonances withΓee(Γhad/Γtot)⊗0.30 keV (95% C.L.) and no steps have been observed. Based on this value ofR, revised values for υ(1S) resonance parameters are presented.
No description provided.
No description provided.
NUMERICAL VALUES GIVEN IN APPENDIX IN PREPRINT. STATISTICAL ERRORS ONLY.
The reaction e + e − → hadrons has been measured in the ϒ and ϒ′ region using the DASP detector at the DESY storage ring DORIS. The following final results are obtained: R had (9.5 GeV)=3.73±0.16±0.28, Γ ee ( ϒ )=(1.23 ± 0.08 ± 0.12) keV, B μμ ( ϒ )=(3.2±1.3±0.3)%, Γ ee Γ had Γ tot (ϒ′)=(0.55±0.11 ±0.06) keV , and M ( ϒ ′)− M ( ϒ )=(556 ±10) MeV.
CROSS SECTION AROUND UPSILON AND UPSILON PRIME.
No description provided.
The ration R = σ (e + e − → hadrons) σ μμ was measured between 12.0 and 36.7 GeV c.m. energy W with a precision of typically ± 5.2%. R is found to be constant with an average R = 4.01 ± 0.03 (stat) ± (syst.) for W ⩾ 14 GeV. Quarks are found to be point-like, the mass parameter describing a possible quark form-factor being larger than 186 GeV. Fits including QCD corrections and a weak neutral-current contribution are presented.
DATA OF RUNPERIOD 1.
DATA OF RUNPERIOD 2.
R MEASURED IN SCANNING MODE.