We present an analysis of theKs0Ks0 system produced in the reaction π−p→Ks0Ks0n at 63 GeV based on ∼700 events in the kinematical region of |t|<0.5 GeV2. We concentrate on masses between 1,200 and 1,600 MeV where a double maximum structure is observed. Performing an amplitude analysis in this mass interval we find thatS,D0 andD+ waves contribute to the mass spectrum at approximately equal strength. The peaks are attributed to spin 2 waves. However, we failed to explained them by interferingf(1270),A2(1310) andf′(1520) resonances alone. While the first peak can be associated withf(1270)−A2(1310) production, an additional tensor meson is needed with mass of ∼1410 MeV and a narrow width for a description of the second one. The analysis as well as the energy dependence deduced from some publishedKs0Ks0 mass spectra suggests this object to be dominantly produced by a natural parity exchange. Because the 2++\(q\bar q\) nonet is already complete the nature of the new tensor meson is an open question.
No description provided.
We report on results of η-electroproduction in the resonance region at momentum transfers ofQ2=2 GeV2 and 3 GeV2. The differential cross sections obtained in the region of the second nucleon resonance strongly support the dominance of theS11(1535) in this channel. The total transverse virtual photoproduction cross section of theS11(1535) shows a flatQ2-dependence ∼e−0.39·Q2. Comparison with the total resonant γvp cross section in the second resonance region aroundW=1.5 GeV shows that theD13(1520) production decreases much faster (∼e−1.6·Q2). The data are not compatible with the simple harmonic oscillator quark model with spin and orbit excitation of a quark only.
No description provided.
No description provided.
No description provided.
The production of thef0 in two photon collisions, with the subsequent decayf0→π+π− has been observed in the CELLO detector at PETRA. Thef0 peak was found to lie on a dipion continuum and to be shifted downwards in mass by ≃50 MeV/c2. The ππ mass spectrum from 0.8 to 1.5 GeV/c2 was well fitted by the model of Mennessier using only a unitarised Born amplitude and helicity 2f0 amplitude. The previously observed mass shift and distortion of thef0 peak are explained by strong interference between the Born andf0 amplitudes. The only free parameter in the fit of the data to the model is the radiative widthΓγγ(f0). It was found that:Γγγ(f0)=2.5±0.1±0.5 keV where the first (second) quoted errors are statistical (systematic).
Data read from graph.
Data read from graph.
The energy spectra of deuterons recoiling from a deuterium gas target bombarded by transversely polarized 796-MeV protons have been measured to obtain the differential cross sections, dσdt, and analyzing powers, Ay(t), for p→-d elastic scattering over a range of laboratory angles from 4.53° to 13.02°, corresponding to a range of four-momentum transfer squared, |t|, from 0.013 to 0.108 GeV2/c2. Employing several sets of nucleon-nucleon, N-N, amplitudes obtained from N-N phase shift analyses, comparisons are made between the experimental data and the predictions of a multiple scattering theory. In this region of four-momentum transfer, Ay is shown to depend almost entirely on the spin-independent and spin-orbit N-N amplitudes. NUCLEAR REACTIONS d(p→, p)d, E=796 MeV; measured dσdt(θ) and Ay(θ); comparison with multiple-scattering theory using free N-N amplitudes, −t=0.013−0.108 GeV2/c2, Δt=1.88×10−3 GeV2/c2.
X ERROR D(-T) = 0.0019 GEV**2.
None
No description provided.
No description provided.
No description provided.
Two-particle small-angle correlations between negative pions and between protons in carbon-carbon collisions atP=4.2 GeV/c per nucleon have been studied, both for an unbiased sample and for “central” events. A comparison of experimental π− π− andpp correlation functions with theoretical predictions has been made. A possible evidence for the existence of two fireballs in C+C interactions atP=4.2 GeV/c per nucleon is presented.
THE SECOND REACTION IS TAKEN TO BE 'CENTRAL'.
THE SECOND REACTION IS TAKEN TO BE 'CENTRAL' AND P OF PROTONS < 0.3 GEV FOR BOTH REACTIONS.
THE SECOND REACTION IS TAKEN TO BE 'CENTRAL' AND E(P=3-4,RF=LAB) < 0.3 GEV ,(P(P=3-4,RF=LAB))**2 < 0.2 GEV**2 FOR ALL REACTIONS.
We have measured the p p differential elastic cross section at 8 momenta from 353 to 578 MeV/ c , determining, for each momentum, the ratio ρ of the real to imaginary parts of the elastic forward amplitude, the slope b of the elastic cross section and the total p p cross section σ. Our results are compared with previous experimental results and with theoretical predictions.
No description provided.
No description provided.
Numerical values supplied by M. Cresti.
We present our final data on the production of the baryons p, Λ, Λ , Σ 0 , Σ 0 , Σ − , Σ + , Ω + , and of the baryon resonances Δ ++ (1232), Σ ∗± (1385), Σ ∗± (1385) in K + p interactions at 70 GeV/ c . Results are given on total and semi-inclusive cross sections, transverse momentum distributions and Feynman- x spectra. The data are compared with measurements at 32 GeV/ c and other energies. The predictions of the LUND fragmentation model for low- p T hadron-hadron collisions are examined and found to offer a reasonably successful description of the data.
No description provided.
No description provided.
No description provided.
We have obtained a sample of 20 465 (2201) events in the channel pp→ ( Λ 0 K + )p at 50 (30) GeV/ c incident momentum with Geneva-Lausanne spectrometer at the CERN SPS. In this analysis we investigate: 1. (i) the production of N ∗ (I = 1 2 ) states in the mass region 1.6 ⩽ M ( Λ 0 K + ) ⩽ 2.6 GeV and momentum transfer 0.06 ⩽ | t | 1.0 (GeV/ c ) 2 , by studing the amplitudes and phases from a moment analysis of the decay angular distribution; 2. (ii) the contribution of the K-exchange Deck model for M ( Λ 0 K + < 2.22 GeV; 3. (iii) the double Regge exchange phenomenology for s Λ 0 K + > 5 GeV 2 and s Λ 0 K + p > 5 GeV 2 .
No description provided.
No description provided.
No description provided.
The differential cross section for the reaction π + + d → p + p has been measured at pion momenta between 0.48 and 1.16 GeV c with steps of 20 and 40 GeV c for seven CM proton angles between 6° and 61°. At smaller angles, the measured cross sections show a dip at around 0.7 GeV c , while at larger angles the cross sections vary monotonically as a function of incident momentum. The angular distribution shows a considerably rapid variation with increasing momentum. Legendre polynomial fits of the data are presented.
No description provided.
LEGENDRE POLYNOMIAL COEFFICIENTS. NOTE THE FORM OF THE LEGENDRE EXPANSION DIFFERS BY A FACTOR P**-2 FROM THE CONVENTIONAL ONE.