The photoproduction of ρ0 and ρ− mesons has been studied at 3 GeV in the reactions γd→dπ±π−, γd→psnπ+π−, and γd→pspπ−π0. For ρ0 and ρ− production in these reactions we present the total and differential cross sections, the decay angular distributions, and the spin density matrix elements. The photoproduction of the ρ0 is found to be consistent with s-channel helicity conservation and is dominated by natural-parity exchange. The ρ− meson production has approximately equal natural- and unnatural-parity-exchange contributions. The unnatural-parity-exchange contribution is consistent with one-pion exchange and is used to estimate the value of Γρπγ.
No description provided.
No description provided.
No description provided.
The differential elastic p−p scattering cross section was measured at 6 GeV/c at the Argonne Zero Gradient Synchrotron in the range p⊥2 = 0.6−1.0 (GeV/c)2 using a 65%-polarized target and a 75%-polarized extracted beam of intensity 3 × 109 protons/pulse. We simultaneously measured the polarization of the recoil proton with a well-calibrated carbon-target polarimeter. All three polarizations were measured perpendicular to the horizontal scattering plane. Our results indicate that P and T invariance are both obeyed to good precision even at large p⊥2. Parity invariance implies that the eight single-flip transversity cross sections are zero, so our data give the relative magnitudes of the eight remaining pure spin cross sections where all spins are measured. We find that the double-flip transversity cross sections are nonzero.
No description provided.
As part of a program of measurements of the πp system we have measured the backward differential cross section for π+p elastic scattering at 16 momenta from 1.25 to 2.0 GeV/c inclusive. The angular region covered is -0.46 to -0.97 in cosθc.m.. The high resolution in u of 0.03 to 0.04 (GeV/c)2, together with good statistics, enables a detailed examination of the momentum and angular dependence of structure in this channel. The data are compared with distributions from other experiments and with the most recent phaseshift fit.
No description provided.
No description provided.
No description provided.
In a single-arm spectrometer experiment, high-precision measurements of dσdt for π−p, K−p, and p¯p elastic scattering have been made at 8 and 16 GeV/c. The π−p data show rich structure at 8 GeV/c, indicative of strong non-Pomeron contributions, while the 16-GeV/c data are much smoother. For −t≳1 (GeV/c)2 there is a strong s dependence while there is very little for −t<1 (GeV/c)2. For p¯p scattering the forward region is smoothly diffractive for −t<0.4 (GeV/c)2 and shows antishrinkage. The exponential slope parameter b is measured to be 12.36 ± 0.04 (GeV/c)−2 at 8 GeV/c and 11.40 ± 0.04 (GeV/c)−2 at 16 GeV/c. The structure near −t=0.6 (GeV/c)2 seen at lower energies is still obvious at 16 GeV/c. The K−p data show some structure at 8 GeV/c, but can be represented adequately by a quadratic exponential form. At 16 GeV/c the K−p angular distribution shows antishrinkage and lies above the 8-GeV/c cross section for 0.11<−t<0.8 (GeV/c)2.
No description provided.
No description provided.
No description provided.
The differential cross sections for K+d coherent, breakup, and charge-exchange scattering have been measured at several momenta in the interval 250-600 MeV/c. The data have been fitted using a partial-wave analysis. Assuming an s-wave description of I=1 scattering and using data from the coherent and charge-exchange channels, a description of I=0 K+−N scattering by a combination of s and p waves in a simple single-scattering impulse model has been attempted. The phase shifts obtained are unique up to the Fermi-Yang ambiguity, which can be removed by using existing polarization results at 600 MeV/c.
COHERENT SCATTERING DIFFERENTIAL CROSS SECTION IN THE LABORATORY FRAME.
COHERENT SCATTERING DIFFERENTIAL CROSS SECTION IN THE LABORATORY FRAME.
COHERENT SCATTERING DIFFERENTIAL CROSS SECTION IN THE LABORATORY FRAME.
Cross sections are presented for all final states without strange-particle production. Contributions to single-pion production are found from (i) Δ(1238)π, (ii) ρ+p, (iii) nucleon diffractive dissociation into Nπ, (iv) N*(1688)π+, and (v) "phase space." Processes (i), (ii), and (iii) are studied in some detail taking into account overlaps between the various subchannels.
No description provided.
'JM'.
'JM'. USING DATA WITH 1.12 < M(P PI+) < 1.32 GEV AND COS(P PI DECAY ANGLE IN JACKSON FRAME) < 0.
We have measured the backward differential cross section in π−p elastic scattering at 31 momenta from 1.28 to 3.0 GeV/c. These measurements covered the center-of-mass angular range of 125°-178° corresponding to −0.570≲cosθc.m.≲−0.999. Considerable structure in the angular distribution is found. We compare these data with data from other experimets and to predictions made by the latest phase-shift solution. We find, in general, good agreement with other data in the few regions of overlap. The fits from the phase-shift solution do not accurately reproduce these data at low momenta below 1.9 GeV/c but give excellent agreement above this momentum.
No description provided.
No description provided.
No description provided.
None
Axis error includes +- 10/10 contribution.
None
No description provided.
None
No description provided.