Date

Measurement of differential cross sections of isolated-photon plus heavy-flavour jet production in pp collisions at $\sqrt{s}=8$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 776 (2018) 295-317, 2018.
Inspire Record 1632756 DOI 10.17182/hepdata.79163

This Letter presents the measurement of differential cross sections of isolated prompt photons produced in association with a b-jet or a c-jet. These final states provide sensitivity to the heavy-flavour content of the proton and aspects related to the modelling of heavy-flavour quarks in perturbative QCD. The measurement uses proton-proton collision data at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of up to 20.2 fb$^{-1}$. The differential cross sections are measured for each jet flavour with respect to the transverse energy of the leading photon in two photon pseudorapidity regions: $|\eta^\gamma|<1.37$ and $1.56<|\eta^\gamma|<2.37$. The measurement covers photon transverse energies $25 < E_\textrm{T}^\gamma<400$ GeV and $25 < E_\textrm{T}^\gamma<350$ GeV respectively for the two $|\eta^\gamma|$ regions. For each jet flavour, the ratio of the cross sections in the two $|\eta^\gamma|$ regions is also measured. The measurement is corrected for detector effects and compared to leading-order and next-to-leading-order perturbative QCD calculations, based on various treatments and assumptions about the heavy-flavour content of the proton. Overall, the predictions agree well with the measurement, but some deviations are observed at high photon transverse energies. The total uncertainty in the measurement ranges between 13% and 66%, while the central $\gamma+b$ measurement exhibits the smallest uncertainty, ranging from 13% to 27%, which is comparable to the precision of the theoretical predictions.

12 data tables

Measured fiducial integrated $\gamma+b$ and $\gamma+c$ cross sections for $|\eta^\gamma|<1.37$ and $1.56<|\eta^\gamma|<2.37$.

Measured $\gamma+b$ fiducial differential cross section as a function of $E_\text{T}^\gamma$ for $|\eta^\gamma|<1.37$.

Measured $\gamma+b$ fiducial differential cross section as a function of $E_\text{T}^\gamma$ for $1.56<|\eta^\gamma|<2.37$.

More…

Search for doubly charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton-proton collisions at $\sqrt{s}$ = 13 TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 199, 2018.
Inspire Record 1632760 DOI 10.17182/hepdata.80462

A search for doubly charged Higgs bosons with pairs of prompt, isolated, highly energetic leptons with the same electric charge is presented. The search uses a proton-proton collision data sample at a centre-of-mass energy of 13 TeV corresponding to 36.1 $\mathrm{fb}^{-1}$ of integrated luminosity recorded in 2015 and 2016 by the ATLAS detector at the LHC. This analysis focuses on the decays $H^{\pm\pm}\rightarrow e^{\pm}e^{\pm}$, $H^{\pm\pm}\rightarrow e^{\pm}\mu^{\pm}$ and $H^{\pm\pm}\rightarrow \mu^{\pm}\mu^{\pm}$, fitting the dilepton mass spectra in several exclusive signal regions. No significant evidence of a signal is observed and corresponding limits on the production cross-section are derived at 95% confidence level. The observed lower limit on the mass of a doubly charged Higgs boson only coupling to left-handed leptons ($e$,$\mu$) varies from 770 GeV to 870 GeV (850 GeV expected) for $B(H^{\pm\pm}\rightarrow \ell^{\pm}\ell^{\pm})$ = 100% and both the expected and observed mass limits are above 450 GeV for $B(H^{\pm\pm}\rightarrow \ell^{\pm}\ell^{\pm})$ = 10% and any combination of partial branching ratios.

32 data tables

Observed and expected upper limit on the cross-section for $pp \to H^{++}H^{--}$ for a combination of partial branching ratios of $B(ee) = 100\%$, $B(e \mu ) = 0\%$, and $B( \mu \mu ) = 0\%$.

Observed and expected upper limit on the cross-section for $pp \to H^{++}H^{--}$ for a combination of partial branching ratios of $B(ee) = 0\%$, $B(e \mu ) = 0\%$, and $B( \mu \mu ) = 100\%$.

Observed and expected upper limit on the cross-section for $pp \to H^{++}H^{--}$ for a combination of partial branching ratios of $B(ee) = 0\%$, $B(e \mu ) = 100\%$, and $B( \mu \mu ) = 0\%$.

More…

Version 3
Measurement of the Drell--Yan triple-differential cross section in $pp$ collisions at $\sqrt{s} = 8$ TeV

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 12 (2017) 059, 2017.
Inspire Record 1630886 DOI 10.17182/hepdata.77492

This paper presents a measurement of the triple-differential cross section for the Drell--Yan process $Z/\gamma^*\rightarrow \ell^+\ell^-$ where $\ell$ is an electron or a muon. The measurement is performed for invariant masses of the lepton pairs, $m_{\ell\ell}$, between $46$ and $200$ GeV using a sample of $20.2$ fb$^{-1}$ of $pp$ collisions data at a centre-of-mass energy of $\sqrt{s}=8$ TeV collected by the ATLAS detector at the LHC in 2012. The data are presented in bins of invariant mass, absolute dilepton rapidity, $|y_{\ell\ell}|$, and the angular variable $\cos\theta^{*}$ between the outgoing lepton and the incoming quark in the Collins--Soper frame. The measurements are performed in the range $|y_{\ell\ell}|<2.4$ in the muon channel, and extended to $|y_{\ell\ell}|<3.6$ in the electron channel. The cross sections are used to determine the $Z$ boson forward-backward asymmetry as a function of $|y_{\ell\ell}|$ and $m_{\ell\ell}$. The measurements achieve high-precision, below the percent level in the pole region, excluding the uncertainty in the integrated luminosity, and are in agreement with predictions. These precision data are sensitive to the parton distribution functions and the effective weak mixing angle.

8 data tables

Detailed breakdown of systematic uncertainties for the measurement in the central rapidity muon channel. Common systematic uncertainty on the luminosity measurment of 1.8% is not included. Correlated systematic uncertainties with the suffix :A should be treated as additive and with the suffix :M should be treated as multiplicative. The source 'sys,uncor' represents bin-to-bin uncorrelated systematic uncertainty. The cross sections are given at the Born QED level. 'C Dressed' represents the multiplicative correction factor to translate the cross sections to the dressed level with the cone radius of 0.1: SigmaDressed = C Dressed * SigmaBorn.

Detailed breakdown of systematic uncertainties for the measurement in the central rapidity electron channel. Common systematic uncertainty on the luminosity measurment of 1.8% is not included. Correlated systematic uncertainties with the suffix :A should be treated as additive and with the suffix :M should be treated as multiplicative. The source 'sys,uncor' represents bin-to-bin uncorrelated systematic uncertainty. The cross sections are given at the Born QED level. 'C Dressed' represents the multiplicative correction factor to translate the cross sections to the dressed level with the cone radius of 0.1: SigmaDressed = C Dressed * SigmaBorn.

Detailed breakdown of systematic uncertainties for the measurement in the forward rapidity electron channel. Common systematic uncertainty on the luminosity measurment of 1.8% is not included. Correlated systematic uncertainties with the suffix :A should be treated as additive and with the suffix :M should be treated as multiplicative. The source 'sys,uncor' represents bin-to-bin uncorrelated systematic uncertainty. The cross sections are given at the Born QED level. 'C Dressed' represents the multiplicative correction factor to translate the cross sections to the dressed level with the cone radius of 0.1: SigmaDressed = C Dressed * SigmaBorn.

More…

Measurement of the cross-section for electroweak production of dijets in association with a $Z$ boson in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 775 (2017) 206-228, 2017.
Inspire Record 1627873 DOI 10.17182/hepdata.77267

The cross-section for the production of two jets in association with a leptonically decaying Z boson ($Zjj$) is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data recorded with the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 3.2 fb$^{-1}$. The electroweak $Zjj$ cross-section is extracted in a fiducial region chosen to enhance the electroweak contribution relative to the dominant Drell-Yan $Zjj$ process, which is constrained using a data-driven approach. The measured fiducial electroweak cross-section is $\sigma^{Zjj}_{EW}= 119\pm 16 (\mathrm{stat.}) \pm 20 (\mathrm{syst.})\pm 2 (\mathrm{lumi.})$ for dijet invariant mass greater than 250 GeV, and $34.2\pm 5.8 (\mathrm{stat.})\pm 5.5 (\mathrm{syst.})\pm 0.7 (\mathrm{lumi.})$ for dijet invariant mass greater than 1 TeV. Standard Model predictions are in agreement with the measurements. The inclusive $Zjj$ cross-section is also measured in six different fiducial regions with varying contributions from electroweak and Drell-Yan $Zjj$ production.

4 data tables

Fiducial regions definitions

Measured and predicted inclusive Zjj production cross-sections in the six fiducial regions

Measured and predicted EW-Zjj production cross-sections in the EW-enriched fiducial regions with and without an additional kinematic requirement of $m_{jj} > $ 1 TeV

More…

Search for new phenomena in high-mass final states with a photon and a jet from $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 102, 2018.
Inspire Record 1627878 DOI 10.17182/hepdata.78551

A search is performed for new phenomena in events having a photon with high transverse momentum and a jet collected in 36.7 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The invariant mass distribution of the leading photon and jet is examined to look for the resonant production of new particles or the presence of new high-mass states beyond the Standard Model. No significant deviation from the background-only hypothesis is observed and cross-section limits for generic Gaussian-shaped resonances are extracted. Excited quarks hypothesized in quark compositeness models and high-mass states predicted in quantum black hole models with extra dimensions are also examined in the analysis. The observed data exclude, at 95% confidence level, the mass range below 5.3 TeV for excited quarks and 7.1 TeV (4.4 TeV) for quantum black holes in the Arkani-Hamed-Dimopoulos-Dvali (Randall-Sundrum) model with six (one) extra dimensions.

6 data tables

Observed 95% CL upper limits on the production cross section times branching ratio to a photon and a quark or gluon for the excited-quarks model.The limits are placed as a function of m_q* for the excited-quark signal. The calculation is performed using ensemble tests for masses in the search range every 250 GeV up to 5 TeV and then 200 GeV up to 6 TeV.

Observed 95% CL upper limits on the production cross section times branching ratio to a photon and a quark or gluon for the RS1 model. The limits are placed as a function of M_th. The calculation is performed using ensemble tests for masses in the search range every 200 GeV.

Fiducial acceptance and selection efficiency for the excited quark model as a function of the excited-quark mass.

More…

Measurements of the pp$\to$ZZ production cross section and the Z$\to 4\ell$ branching fraction, and constraints on anomalous triple gauge couplings at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 165, 2018.
Inspire Record 1625296 DOI 10.17182/hepdata.80152

Four-lepton production in proton-proton collisions, $\mathrm{pp}\to (\mathrm{Z}/ \gamma^*)(\mathrm{Z}/\gamma^*) \to 4\ell$, where $\ell = \mathrm{e}$ or $\mu$, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The ZZ production cross section, $\sigma(\mathrm{pp} \to \mathrm{Z}\mathrm{Z}) = 17.2 \pm 0.5\text{ (stat) }\pm 0.7\text{ (syst) }\pm 0.4(\mathrm{theo}) \pm 0.4\text{ (lumi)}$ pb, measured using events with two opposite-sign, same-flavor lepton pairs produced in the mass region $60 < m_{\ell^+\ell^-} < $120 GeV, is consistent with standard model predictions. Differential cross sections are measured and are well described by the theoretical predictions. The Z boson branching fraction to four leptons is measured to be $\mathcal{B}(\mathrm{Z}\to 4\ell) = 4.8 \pm 0.2\text{ (stat) }\pm 0.2\text{ (syst) } \pm 0.1\text{ (theo) }\pm 0.1\text{ (lumi) }\times 10^{-6}$ for events with a four-lepton invariant mass in the range 80 $ < m_{4\ell} < $ 100 GeV and a dilepton mass $m_{\ell\ell} > $4 GeV for all opposite-sign, same-flavor lepton pairs. The results agree with standard model predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ$\gamma$ couplings at 95% confidence level: $-0.0012 < f_4^\mathrm{Z} < 0.0010$, $-0.0010 < f_5^\mathrm{Z} < 0.0013$, $-0.0012 < f_4^{\gamma} < 0.0013$, $-0.0012 < f_5^{\gamma} < 0.0013$.

14 data tables

The measured total ZZ cross section using 2016 data. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity and theortical sources, the second is theoretical uncertianty on the extrapolation from the selected region to the total phase space, the third is the luminosity uncertianty

The measured total ZZ cross section using 2015 and 2016. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity and theortical sources, the second is theoretical uncertianty on the extrapolation from the selected region to the total phase space, the third is the luminosity uncertianty

The measured fiducial ZZ cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity uncertianty

More…

Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2018) 055, 2018.
Inspire Record 1624690 DOI 10.17182/hepdata.78402

A search for heavy neutral Higgs bosons and $Z^{\prime}$ bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to $\tau^+\tau^-$ with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for $Z^{\prime}$ bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude $\tan\beta > 1.0$ for $m_A$ = 0.25 TeV and $\tan\beta > 42$ for $m_A$ = 1.5 TeV at the 95% confidence level. For the Sequential Standard Model, $Z^{\prime}_\mathrm{SSM}$ with $m_{Z^{\prime}} < 2.42$ TeV is excluded at 95% confidence level, while $Z^{\prime}_\mathrm{NU}$ with $m_{Z^{\prime}} < 2.25$ TeV is excluded for the non-universal $G(221)$ model that exhibits enhanced couplings to third-generation fermions.

29 data tables

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Despite listing this as an exclusive final state (as there must be no b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. In the paper, the first bin is cut off at 60 GeV for aesthetics but contains underflows down to 50 GeV as in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Despite listing this as an exclusive final state (as there must be at least one b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. In the paper, the first bin is cut off at 60 GeV for aesthetics but contains underflows down to 50 GeV as in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Despite listing this as an exclusive final state (as there must be no b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

More…

Measurement of the exclusive $\gamma \gamma \rightarrow \mu^+ \mu^-$ process in proton--proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 777 (2018) 303-323, 2018.
Inspire Record 1615866 DOI 10.17182/hepdata.79947

The production of exclusive $\gamma \gamma \rightarrow \mu^+ \mu^-$ events in proton--proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC, using data corresponding to an integrated luminosity of 3.2 fb$^{-1}$. The measurement is performed for a dimuon invariant mass of 12 GeV $<m_{\mu^+\mu^-}<$ 70 GeV. The integrated cross-section is determined within a fiducial acceptance region of the ATLAS detector and differential cross-sections are measured as a function of the dimuon invariant mass. The results are compared to theoretical predictions that include corrections for absorptive effects.

2 data tables

The measured fiducial cross section.

Differential fiducial cross section in bins of the dimuon invariant mass. The measurements are listed together with the statistical and systematic uncertainties. The systematic uncertainties are separated into 2 uncorrelated, 7 correlated sources and the luminosity uncertainty. The sign of the uncertainty corresponds to a one standard deviation upward shift of the uncertainty source, where +/- means "+" and -/+ means "-".


Measurement of inclusive and differential cross sections in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 10 (2017) 132, 2017.
Inspire Record 1615206 DOI 10.17182/hepdata.79497

Inclusive and differential fiducial cross sections of Higgs boson production in proton-proton collisions are measured in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel. The proton-proton collision data were produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector in 2015 and 2016, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The inclusive fiducial cross section in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel is measured to be 3.62 $\pm$ 0.50 (stat) $^{+0.25}_{-0.20}$ (sys) fb, in agreement with the Standard Model prediction of 2.91 $\pm$ 0.13 fb. The cross section is also extrapolated to the total phase space including all Standard Model Higgs boson decays. Several differential fiducial cross sections are measured for observables sensitive to the Higgs boson production and decay, including kinematic distributions of jets produced in association with the Higgs boson. Good agreement is found between data and Standard Model predictions. The results are used to put constraints on anomalous Higgs boson interactions with Standard Model particles, using the pseudo-observable extension to the kappa-framework.

16 data tables

Measured differential fiducial cross sections in Higgs transverse momentum (second column). The given uncertainty is split into statistical (first) and systematic components (second). Values without uncertainties are 95% CL limits in the absence of signal events. The third column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg NNLOPS for the ggF process, Powheg for the VBF and the VH processes, and Madgraph5_aMC@NLO for the ttH and bbH processes. The uncertainty includes PDF, scale, and branching fraction uncertainty. All predictions were normalized to the best available inclusive Higgs production cross sections at the time of the publication.

Measured differential fiducial cross sections in Higgs rapidity (second column). The given uncertainty is split into statistical (first) and systematic components (second). Values without uncertainties are 95% CL limits in the absence of signal events. The third column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg NNLOPS for the ggF process, Powheg for the VBF and the VH processes, and Madgraph5_aMC@NLO for the ttH and bbH processes. The uncertainty includes PDF, scale, and branching fraction uncertainty. All predictions were normalized to the best available inclusive Higgs production cross sections at the time of the publication.

Measured differential fiducial cross sections in invariant mass of the subleading lepton pair (second column). The given uncertainty is split into statistical (first) and systematic components (second). Values without uncertainties are 95% CL limits in the absence of signal events. The third column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg NNLOPS for the ggF process, Powheg for the VBF and the VH processes, and Madgraph5_aMC@NLO for the ttH and bbH processes. The uncertainty includes PDF, scale, and branching fraction uncertainty. All predictions were normalized to the best available inclusive Higgs production cross sections at the time of the publication.

More…

Version 2
Measurement of vector boson scattering and constraints on anomalous quartic couplings from events with four leptons and two jets in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 774 (2017) 682-705, 2017.
Inspire Record 1615207 DOI 10.17182/hepdata.81936

A measurement of vector boson scattering and constraints on anomalous quartic gauge couplings from events with two Z bosons and two jets are presented. The analysis is based on a data sample of proton-proton collisions at sqrt(s) = 13 TeV collected with the CMS detector and corresponding to an integrated luminosity of 35.9 inverse femtobarns. The search is performed in the fully leptonic final state ZZ to lll'l', where l, l' = e, mu. The electroweak production of two Z bosons in association with two jets is measured with an observed (expected) significance of 2.7 (1.6) standard deviations. A fiducial cross section for the electroweak production is measured to be sigma[EW](pp -> ZZjj -> lll'l'jj) = 0.40 -0.16 +0.21 (stat) -0.09 +0.13 (syst) fb, which is consistent with the standard model prediction. Limits on anomalous quartic gauge couplings are determined in terms of the effective field theory operators T0, T1, T2, T8, and T9. This is the first measurement of vector boson scattering in the ZZ channel at the LHC.

9 data tables

Measured and expected fiducial cross-sections.

Data from Table 2. Observed and expected exclusion limits for the aQGC parameters at 95% CL, without any form factors.

Data from Fig.4. Observed yields of four lepton invariant mass distribution. The last bin includes overflow.

More…