Cross sections, differential cross sections, and hyperon polarization results are presented for the reactions K¯0p→Λπ+ and K¯0p→Σ0π+ in the momentum interval 1 to 12 GeV/c. Emphasis is placed on the comparison of Λ and Σ channels, and on the momentum dependences of the data. In particular, the Λ polarization data are consistent with being independent of energy above 2 GeV/c; and the slopes of the forward cross sections are found to increase toward the slope values for the line-reversed reactions πp→K(Λ,Σ) as energy increases.
No description provided.
The differential cross sections for the γ + n → π O + n reaction have been measured at the photon energies of 500–900 MeV. The ratios, R oo = [ d δ d Ω(γ n → π o n ) ] [ d δ d Ω(γ p → π o p ) ] , have been obtained at the c.m. pion angles of 60 O , 90 O , 105 O , 120 O , and 140 O .
No description provided.
The transverse momentum and rapidity distributions of net protons and negatively charged hadrons have been measured for minimum bias proton-nucleus and deuteron-gold interactions, as well as central oxygen-gold and sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net protons at midrapidity in central nucleus-nucleus collisions increases both with target mass for sulphur projectiles and with the projectile mass for a gold target. The shape of the rapidity distributions of net protons forward of midrapidity for d+Au and central S+Au collisions is similar. The average rapidity loss is larger than 2 units of rapidity for reactions with the gold target. The transverse momentum spectra of net protons for all reactions can be described by a thermal distribution with `temperatures' between 145 +- 11 MeV (p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The multiplicity of negatively charged hadrons increases with the mass of the colliding system. The shape of the transverse momentum spectra of negatively charged hadrons changes from minimum bias p+p and p+S interactions to p+Au and central nucleus-nucleus collisions. The mean transverse momentum is almost constant in the vicinity of midrapidity and shows little variation with the target and projectile masses. The average number of produced negatively charged hadrons per participant baryon increases slightly from p+p, p+A to central S+S,Ag collisions.
Rapidity distributions of net hyperons (Lambda-Lambdabar) for central S+S (0.5 < y < 3.0) collisions at 200 GeV/nucleon.
The differential and channel cross sections have been measured for the reactions K L 0 p → K S 0 p and K L 0 p → Λ 0 π + in nine energy intervals in the c.m. range 1605 to 1910 MeV. The regeneration reaction is a combination of the KN amplitudes (with I = 0 and 1) and the K N amplitude ( I = 1) and is very sensitive to the various KN phase-shift solutions, some of which show an exotic I = 0, P 1 resonance. Our results have been expressed in terms of frequency distributions and cross sections, normalised by the Λ 0 π + reaction. These results have been compared with the predictions of various partial-wave analyses. Qualitatively we can eliminate the P 1 non-resonant solution, though no solution correctly predicts our results.
INTEGRATED CROSS SECTION, FORWARD DIFFERENTIAL CROSS SECTION AND CALCULATED PHASE OF THE FORWARD REGENERATION AMPLITUDE. SIG INCLUDES A 4.9 PCT RELATIVE ERROR AS WELL AS EXTRAPOLATION AND STATISTICAL ERRORS.
Differential cross sections for the reaction π − p→ η n at 20 incident pion momenta between 724 and 2723 MeV/ c are presented. The results are compared with previous measurements. The data show clear evidence of non-zero couplings of this channel to known I = 1 2 , S = 0 baryon resonances with masses up to 2000 MeV/ c 2 .
LEGENDRE POLYNOMIAL COEFFICIENTS FROM FITS TO D(SIG)/DOMEGA.
Inclusive production of ifπ ± , K ± and p has been studied near charm threshold for c.m. energies between 3.6 and 5.2 GeV. Differential and scaling cross sections together with particle multiplicities have been determinated. By comparing data below and above charm threshold the charm contribution to if π ± and K ± production has been extracted. A comparison has been made between inclusice p production and inelastic electron-proton scattering. To study differences between three-gluon annihilation and two-quark production of the spectra from J/ decay and from non-resonant production at 3.6 GeV has been compared.
No description provided.
None
.
None
DISTRIBUTION IS PRESENTED IN THE BEAM FRAGMENTATION REGIONS.
Photons of 3 GeV and 5 GeV were scattered on 7 different elements, ranging from Be to Au, and detected with a pair spectrometer. The angular distributions show diffractive patterns consistent with known nuclear sizes. Forward cross sections are 20–30% lower than expected from an A 2 dependence. This shadowing effect is qualitatively explained by photon interactions via intermediate hadronic states.
No description provided.
The differential cross sections and density matrix elements for the φ and ϱ 0 mesons have been measured in the reactions K − p → K − K + ( Λ , Σ 0 ) and K − p → π − π + ( Λ , Σ 0 ) at 13 GeV using a wire chamber spectrometer. The analysis shows that while the vector meson production is dominated by the natural parity exchange amplitude, some unnatural parity exchange is also required. Furthermore the φ and ϱ natural exchange cross sections are identical in shape and have the 2:1 relative strength expected in the quark model with K ∗ and K ∗∗ exchange degeneracy. The analysis of the clear peak-dip ϱ 0 − ω interference pattern observed in the π − π + data indicates that the ω production is in phase with the ϱ and of similar magnitude. Both the S ∗ and f′ meson are clearly observed in this experiment. The S ∗ data are found to be consistent with S ∗ parameters deduced from ππ scattering analyses. The f′ density matrix elements and a new limit of the f′ → π − π + branching ratio are presented.
No description provided.