The ωπ − mass spectrum, in the reaction π −p → ωπ − pat 11.2 GeV/ c , shows the production of the B − meson with a cross section of 27 ± 5 μb as well as a clear enhancement around 1670 MeV. In the differential cross section for B − production, there is a strong forward peak and a change of slope at t ' t 0.2 GeV 2 .
CORRECTED FOR BACKGROUND AND OMEGA TAILS.
No description provided.
ABS(D-WAVE/S-WAVE) = 0.4 +- 0.1 FOR B DECAY.
None
No description provided.
Measurement of the exotic exchange reaction π − p → K + Σ − has been performed at 5 and 8 GeV, in the −0.015 to −0.13 and −0.009 to −0.15 (GeV/ c ) 2 range of t repectively. We give the value near t = 0 of the differential cross section at 5 GeV, 21 −21 +76 nb/(GeV/ c ) 2 , and an upper limit (< 37 nb/GeV/ c ) 2 ) at 8 GeV. As a check the measured differential cross section is given at both energies for the reaction π + p → K + Σ + in the same range of t ★★ ★★ Results presented here were included in the thesis of Doctorat d′Etat by M.N. Minard, Orsay, France, 1976. .
No description provided.
No description provided.
The production of the f 0 (1270) has been studied in the reaction π − p → π + π − n at 12 and 15 GeV/ c in the momentum transfer range 0.02 to 0.80 GeV 2 . Differential and total cross sections for the reaction π − p → f 0 n have been determined. The f 0 decay density matrix elements have been evaluated requiring all the matrix eigenvalues to be non-negative. The relative unnatural and natural parity exchange contributions to the f 0 production have been studied. The results are compared with a Regge exchange model formulated in terms of the pion and A 2 exchanges including cut contributions.
No description provided.
No description provided.
No description provided.
Elastik K − n ( I = 1) differential cross sections have been measured at 14 momenta between 610 and 940 MeV/ c , over the c.m. angular range −0.7 < cos θ ∗ < 0.8 . The results, which cover the c.m. energy range 1610–1765 MeV, have been fitted with Legendre polynomials and compared with some existing predictions from a partial-wave analysis.
No description provided.
No description provided.
SEMI-INCLUSIVE CROSS SECTION.
Experimental details and channel cross sections are presented for five K − deuterium bubble chamber experiments. Utilising the Fermi motion of the neutron the K − n cross sections are extracted over the c.m. energy range 1750–2200 MeV and where possible results are compared to related channels from other experiments.
CHANNEL CROSS SECTIONS FOR EACH OF THE FIVE EXPERIMENTS - NEUTRON MOTION WITHIN THE DEUTERON MEANS EACH DOES NOT CORRESPOND TO A UNIQUE C.M. ENERGY. CORRECTED FOR GLAUBER SCREENING.
FERMI MOTION OF NEUTRON USED TO EXTRACT ENERGY DEPENDENCE.
FERMI MOTION OF NEUTRON USED TO EXTRACT ENERGY DEPENDENCE.
Three- and four-body final states with strange particles are studied in π + p and π − p interactions at 16 GeV/ c . We present cross sections and investigate their energy dependence. Production mechanism, resonance production and quantum number transfer are discussed. Strong Y ∗ (1385) production is found in the reaction π + p → Λ K + π + , while the corresponding π − p reaction is dominated by production of K ∗ (890). In the NK K π channels, the K and K are produced mainly at the same vertex, i.e. non-strangeness exchange ΔS = 0 is dominant (about 75% of the cases), whereas in the Λ K ππ channels, the Λ and K are more frequently produced at opposite vertices, i.e. | ΔS | = 1 exchange is important (about 60% of the cases). Results on the polarization of the lambdas produced in the π + p reactions are given.
No description provided.
The reactions π + p giving π 0 Δ ++ (1236), η (549) Δ ++ (1236) and η ′(958) Δ ++ (1236) are studied at 16 GeV/ c . Cross sections, differential cross sections and Δ ++ (1236) spin density matrix elements are presented. The π 0 Δ ++ (1236) differential cross section d σ d t′ indicates a dip towards t ′ = 0 and has a minimum at t ′ ≅ 0.6 GeV 2 . The Δ ++ (1236) spin density matrix elements are consistent with the predictions of the Stodolsky-Sakurai model, except perhaps near the forward direction. For ηΔ ++ (1236), the differential cross section d σ d t′ turns over in the forward direction and presents no further structure. SU(3) sum rules are tested and found to be approximately satisfied. The data agree with factorization of ϱ exchange. The effective A 2 trajectory is calculated and found to be consistent with that reported from the reaction π − p → η n.
No description provided.
NORMALIZED TO THE TOTAL CROSS SECTION OF 49 MUB.
No description provided.
The dominant partial waves of the diffractively produced N π system at low Nπ masses (⩽ 1.4 GeV) are determined in the reactions π ± p → π (N π ) at 16 GeV/ c . A satisfactory description of our data can only be obtained by strong contributions of both a 1 2 − S-wave and a 3 2 + P-wave, violating the Gribov-Morrison rule. Spin and parity of the diffractively produced states are found from the interference between diffraction and Δ (1236) production. The interference term is obtained by an isospin analysis.
No description provided.
<NUCLEON PION> MASS DEPENDENCE.
The polarization parameter in proton-proton elastic scattering has been measured at an incident momentum of 7.9 GeV/ c and four-momentum transfers in the range 0.9 < | t | < 6.5 (GeV/ c ) 2 using a high intensity unpolarized proton beam incident on a polarized proton target. The angle and momentum of the forward scattered protons were measured with a magnet spectrometer and scintillation counter hodoscopes and the angle of the recoil proton was measured using similar hodoscopes. A clean separation between the elastic scattering from free hydrogen and that coming from inelastic interactions and from interactions with complex nuclei in the target was obtained. The polarization shows substantial structure rising from zero at | t | = 1.0 (GeV/ c ) 2 to a maximum at | t | = 1.7 (GeV/ c ) 2 and then falling to zero at | t | = 2.0 (GeV/ c ) 2 . There is evidence of a further peak at | t | = 2.8 (GeV/ c ) 2 . Above | t | = 3.25 (GeV/ c ) 2 the polarization is small and consistent with zero. A comparison of these data with data obtained at other beam momenta shows that the polarization parameter has a strong momentum dependence.
No description provided.