Electron scattering cross sections for carbon and oxygen between q = 1 fm −1 and 4 fm −1 are given. The data are analysed in terms of a phenomenological charge distribution and new information concerning the tail and the center of the charge distribution are obtained. The presence of dispersion effects appears to be necessary to explain the cross sections in the first diffraction minimum. The effect of a finite potential and short range correlations on the form factor are discussed.
X ERROR D(TARGET) = 99.99 PCT. X ERROR D(THETA) = 0.9300 DEG.
X ERROR D(TARGET) = 99.99 PCT. X ERROR D(THETA) = 0.9300 DEG.
X ERROR D(THETA) = 0.9300 DEG.
Differential cross sections have been measured for π − p elastic scattering at laboratory momenta in the range 1.2 to 3.0 GeV/ c for the c.m. range 0.97 > cos θ ∗ > −0.98 . The corresponding mass range is 1.78 to 2.56 GeV/ c 2 . The data was obtained from a counter experiment in which the scattered pions and protons were detected in coincidence by arrays of scintillation counters.
No description provided.
No description provided.
No description provided.
An experimental study of the elastic scattering of negative pions off protons at 2.0 GeV/ c is presented. The differential cross section is fitted to a polynomial in cos θ c.m. and the forward angular region as a diffraction peak. The results are compared with those from other bubble chamber experiments at neighbouring energies and discussed in terms of optical model and possible exchange trajectories.
No description provided.
None
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The target asymmetry T, recoil asymmetry P, and beam-target double polarization observable H were determined in exclusive $\pi ^0$ and $\eta $ photoproduction off quasi-free protons and, for the first time, off quasi-free neutrons. The experiment was performed at the electron stretcher accelerator ELSA in Bonn, Germany, with the Crystal Barrel/TAPS detector setup, using a linearly polarized photon beam and a transversely polarized deuterated butanol target. Effects from the Fermi motion of the nucleons within deuterium were removed by a full kinematic reconstruction of the final state invariant mass. A comparison of the data obtained on the proton and on the neutron provides new insight into the isospin structure of the electromagnetic excitation of the nucleon. Earlier measurements of polarization observables in the $\gamma p \rightarrow \pi ^0 p$ and $\gamma p \rightarrow \eta p$ reactions are confirmed. The data obtained on the neutron are of particular relevance for clarifying the origin of the narrow structure in the $\eta n$ system at $W = 1.68\ \textrm{GeV}$. A comparison with recent partial wave analyses favors the interpretation of this structure as arising from interference of the $S_{11}(1535)$ and $S_{11}(1650)$ resonances within the $S_{11}$-partial wave.
Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma p \to \pi^0 p$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.
Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma n \to \pi^0 n$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.
Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma p \to \eta p$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.