None
No description provided.
None
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The differential elastic p−p scattering cross section was measured at 6 GeV/c at the Argonne Zero Gradient Synchrotron in the range P⊥2=0.60−1.0 (GeV/c)2 using a 65% polarized target and a 75% polarized proton beam of intensity 3 × 109 protons/pulse. The polarization of the recoil proton was simultaneously measured with a well calibrated carbon-target polarimeter. All three polarizations were measured perpendicular to the horizontal scattering plane. Our results indicate that P and T invariance are both obeyed to good precision even at our largest P⊥2. Parity invariance implies that the eight single-flip transversity cross sections are zero, so our data gives the magnitudes of the eight remaining pure spin cross sections where all spins are measured. We find that the four double-flip transversity cross sections are nonzero.
No description provided.
THE FIVE INDEPENDENT PURE FOUR-SPIN CROSS SECTIONS AS DERIVED FROM THE EIGHT MEASURED THREE-SPIN CROSS SECTIONS ASSUMING P AND T INVARIANCE. THE ABSOLUTE DIFFERENTIAL CROSS SECTION VALUES ASSUME THAT THE SPIN-AVERAGED D(SIG)/DT IS 2.25, 1.17, 0.365 AND 0.167 MB/GEV**2 FOR EACH VALUE OF PT**2 RESPECTIVELY.
WOLFENSTEIN PARAMETERS. POL(NAME=A) IS (N000) OR (0N00), THE ANALYZING POWER AVERAGED OVER TARGET OR BEAM POLARIZATION. POL(NAME=P) IS (00N0), THE POLARIZATION PARAMETER. TIME-REVERSAL INVARIANCE REQUIRES THAT P = A. POL.POL(NAME=CNN) IS (NN00) USING T-INVARIANCE. POL.POL(NAME=DNN) IS (0N0N). POL.POL(NAME=KNN) IS (N00N). POL.POL(NAME=C3N) IS A COMPONENT OF THE TRIPLE SPIN CORRELATION TENSOR. PARITY INVARIANCE REQUIRES THAT C3N = P.
Results on the protron structure function, F2, are presented for 0.3<q2<80.0 GeV2 and 10<ν<200 GeV. The results support the conclusions of earlier work at 97 and 147 GeV that scaling is violated. A new value for R=σSσT=0.44±0.25 has been obtained using all the Fermilab proton measurements.
No description provided.
Polarization of the scattered Λ has been measured in the reaction Λ+p→Λ+p. A total of 90 000 elastic events was recorded. Polarization was observed which decreased in magnitude with increasing momentum. For 0.1<~|t|<~0.4 GeV2 the polarization is P=−0.21±0.07 for p=110 GeV/c and is +0.01±0.04 at p=320 GeV/c. Results for 860 Λ¯−p elastic scatterings are also presented.
90000 ELASTIC EVENTS.
860 ELASTIC EVENTS.
This paper presents the results of a study of the reaction K−d→(ps)Λ0π−. The cross section for the process K−n→Λ0π− has been measured as a function of the center-of-mass energy in the range from 1550 to 1650 MeV. An energy-dependent partial-wave analysis was performed for this reaction, and two acceptable solutions were found. The first solution indicated no resonant structure in this energy range below the Σ(1670). The second solution indicated resonant structure in the S11 partial wave with ER=1600±6 MeV/c2, Γ(ER)=87±19 MeV/c2, and x=0.12±0.02.
No description provided.
No description provided.
The major production channels of four-prong final states resulting from π+p interactions at a center-of-mass energy of 4.5 GeV are studied. In addition to total production cross sections, comprehensive listings of partial and resonance production cross sections are also given for each final state of interest. All final states, including nπ+π+π+π−, are found to exhibit copious resonance production.
PARTIAL CROSS SECTIONS FROM PI+ P --> PI+ P PI+ PI-.
PARTIAL CROSS SECTIONS FROM PI+ P --> PI+ P PI+ PI- PI0.