High precision measurements of the form factors of proton, pion, and kaon for timelike momentum transfers of |Q^2|=s=14.2 and 17.4 GeV^2 have been made. Data taken with the CLEO-c detector at sqrt(s)=3.772 GeV and 4.170 GeV, with integrated luminosities of 805 pb^-1 and 586 pb^-1, respectively, have been used to study $e^+e^-$ annihilations into pi+pi-, K+K^-, and ppbar. The perturbative QCD prediction that at large Q^2 the quantity Q^2F(Q^2) for vector mesons is nearly constant, and varies only weakly as the strong coupling constant alpha_S(Q^2) is confirmed for both pions and kaons. In contrast, a significant difference is observed between the values of the corresponding pQCD suggested near-constant quantity, |Q^4|G_M(|Q^2|)/mu_p for protons at |Q^2|=14.2 GeV^2 and 17.4 GeV^2. The results suggest the constancy of |Q^2|G_M(|Q^2|)/mu_p, instead.
The measurement of the production of charm jets, identified by the presence of a ${\rm D^0}$ meson in the jet constituents, is presented in proton-proton collisions at centre-of-mass energies of $\sqrt{s}$ = 5.02 and 13 TeV with the ALICE detector at the CERN LHC. The ${\rm D^0}$ mesons were reconstructed from their hadronic decay ${\rm D^0} \rightarrow {\rm K^-}\pi^+$ and the respective charge conjugate. Jets were reconstructed from ${\rm D^0}$-meson candidates and charged particles using the anti-$k_{\rm T}$ algorithm, in the jet transverse momentum range $5
Cross-sections for the production of a $Z$ boson in association with two photons are measured in proton$-$proton collisions at a centre-of-mass energy of 13 TeV. The data used correspond to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment during Run 2 of the LHC. The measurements use the electron and muon decay channels of the $Z$ boson, and a fiducial phase-space region where the photons are not radiated from the leptons. The integrated $Z(\rightarrow\ell\ell)\gamma\gamma$ cross-section is measured with a precision of 12% and differential cross-sections are measured as a function of six kinematic variables of the $Z\gamma\gamma$ system. The data are compared with predictions from MC event generators which are accurate to up to next-to-leading order in QCD. The cross-section measurements are used to set limits on the coupling strengths of dimension-8 operators in the framework of an effective field theory.
The double differential cross sections of the Drell-Yan lepton pair ($\ell^+\ell^-$, dielectron or dimuon) production are measured as functions of the invariant mass $m_{\ell\ell}$, transverse momentum $p_\mathrm{T}(\ell\ell)$, and $\phi^*_\eta$. The $\phi^*_\eta$ observable, derived from angular measurements of the leptons and highly correlated with $p_\mathrm{T}(\ell\ell)$, is used to probe the low-$p_\mathrm{T}(\ell\ell)$ region in a complementary way. Dilepton masses up to 1 TeV are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various $m_{\ell\ell}$ ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3 fb$^{-1}$ of proton-proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV. Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation.
The cross section of the process $e^+ e^-\to\pi^+\pi^-$ has been measured in the Spherical Neutral Detector (SND) experiment at the VEPP-2000 $e^+e^-$ collider VEPP-2000 in the energy region $525 <\sqrt[]{s} <883$ MeV. The measurement is based on data with an integrated luminosity of about 4.6 pb$^{-1}$. The systematic uncertainty of the cross section determination is 0.8 % at $\sqrt{s}>0.600$ GeV. The $\rho$ meson parameters are obtained as $m_\rho = 775.3\pm 0.5\pm 0.6$ MeV, $\Gamma_\rho = 145.6\pm 0.6\pm 0.8$ MeV, $B_{\rho\to e^+ e^-}\times B_{\rho\to\pi^+\pi^-} = (4.89\pm 0.02\pm 0.04)\times 10^{-5}$, and the parameters of the $e^+ e^-\to\omega\to\pi^+\pi^-$ process, suppressed by $G$-parity, as $B_{\omega\to e^+ e^-}\times B_{\omega\to\pi^+\pi^-}= (1.32\pm 0.06\pm 0.02)\times 10^{-6} $ and $\phi_{\rho\omega} = 110.7\pm 1.5\pm1.0$ degrees.
The pion electromagnetic form factor has been measured at the VEPP-2M collider in the c.m. energy range 360 MeV–1400 MeV with the detectors OLYA and CMD. On the basis of all available data for the pion form factor collected in the timelike region, the following values for ρ-meson parameters were obtained: m ρ = 775.9 ± 1.1 MeV, σ ρ = 150.5 ± 3.0 MeV. The ω-meson branching ratio into π + π − pair, electromagnetic radius of the pion, ππ scattering length in the P-wave and the strong interaction contribution to the muon ( g − 2) value were found to be B ωππ = (2.3 ± 0.4)%, 〈 r π 2 〉 = 0.422 ± 0.013 fm 2 , a 1 1 = 0.033 ± 0.033m π −3 , a H = (68.4 ± 1.1) × 10 −9 .
Using 20.7 pb^-1 of e+e- annihilation data taken at sqrt{s} = 3.671 GeV with the CLEO-c detector, precision measurements of the electromagnetic form factors of the charged pion, charged kaon, and proton have been made for timelike momentum transfer of |Q^2| = 13.48 GeV^2 by the reaction e+e- to h+h-. The measurements are the first ever with identified pions and kaons of |Q^2| > 4 GeV^2, with the results F_pi(13.48 GeV^2) = 0.075+-0.008(stat)+-0.005(syst) and F_K(13.48 GeV^2) = 0.063+-0.004(stat)+-0.001(syst). The result for the proton, assuming G^p_E = G^p_M, is G^p_M(13.48 GeV^2) = 0.014+-0.002(stat)+-0.001(syst), which is in agreement with earlier results.
Preliminary results on the determination of the position and shape of the ϱ-meson resonance with electron-positron colliding beams are presented.
A precise measurement of the cross section of the process $e^+e^-\to\pi^+\pi^-(\gamma)$ from threshold to an energy of 3GeV is obtained with the initial-state radiation (ISR) method using 232fb$^{-1}$ of data collected with the BaBar detector at $e^+e^-$ center-of-mass energies near 10.6GeV. The ISR luminosity is determined from a study of the leptonic process $e^+e^-\to\mu^+\mu^-(\gamma)\gamma_{\rm ISR}$, which is found to agree with the next-to-leading-order QED prediction to within 1.1%. The cross section for the process $e^+e^-\to\pi^+\pi^-(\gamma)$ is obtained with a systematic uncertainty of 0.5% in the dominant $\rho$ resonance region. The leading-order hadronic contribution to the muon magnetic anomaly calculated using the measured $\pi\pi$ cross section from threshold to 1.8GeV is $(514.1 \pm 2.2({\rm stat}) \pm 3.1({\rm syst}))\times 10^{-10}$.
For the first time at LHC energies, the forward rapidity gap spectra from proton-lead collisions for both proton and lead dissociation processes are presented. The analysis is performed over 10.4 units of pseudorapidity at a center-of-mass energy per nucleon pair of $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV, almost 300 times higher than in previous measurements of diffractive production in proton-nucleus collisions. For lead dissociation processes, which correspond to the pomeron-lead event topology, the EPOS-LHC generator predictions are a factor of two below the data, but the model gives a reasonable description of the rapidity gap spectrum shape. For the pomeron-proton topology, the EPOS-LHC, QGSJET II, and HIJING predictions are all at least a factor of five lower than the data. The latter effect might be explained by a significant contribution of ultra-peripheral photoproduction events mimicking the signature of diffractive processes. These data may be of significant help in understanding the high energy limit of quantum chromodynamics and for modeling cosmic ray air showers.