Date

Version 2
Probing small Bjorken-$x$ nuclear gluonic structure via coherent J/$\psi$ photoproduction in ultraperipheral PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 131 (2023) 262301, 2023.
Inspire Record 2648536 DOI 10.17182/hepdata.138867

Quasireal photons exchanged in relativistic heavy ion interactions are powerful probes of the gluonic structure of nuclei. The coherent J/$\psi$ photoproduction cross section in ultraperipheral lead-lead collisions is measured as a function of photon-nucleus center-of-mass energies per nucleon (W$^\text{Pb}_{\gamma\text{N}}$), over a wide range of 40 $\lt$ W$^\text{Pb}_{\gamma\text{N}}$$\lt$ 400 GeV. Results are obtained using data at the nucleon-nucleon center-of-mass energy of 5.02 TeV collected by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 1.52 nb$^{-1}$. The cross section is observed to rise rapidly at low W$^\text{Pb}_{\gamma\text{N}}$, and plateau above W$^\text{Pb}_{\gamma\text{N}}$$\approx$ 40 GeV, up to 400 GeV, a new regime of small Bjorken-$x$ ($\approx$ 6 $\times$ 10$^{-5}$) gluons being probed in a heavy nucleus. The observed energy dependence is not predicted by current quantum chromodynamic models.

0 data tables match query

Observation of coherent $\phi$(1020) meson photoproduction in ultraperipheral PbPb collisions at $\sqrt{s_\text{NN}}$ = 5.36 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-HIN-24-009, 2025.
Inspire Record 2908607 DOI 10.17182/hepdata.156183

The first observation of coherent $\phi$(1020) meson photoproduction off heavy nuclei is presented using ultraperipheral lead-lead collisions at a center-of-mass energy per nucleon pair of 5.36 TeV. The data were collected by the CMS experiment and correspond to an integrated luminosity of 1.68 $\mu$b$^{-1}$. The $\phi$(1020) meson signals are reconstructed via the K$^+$K$^-$ decay channel. The production cross section is presented as a function of the $\phi$(1020) meson rapidity in the range 0.3 $\lt$$\lvert y\rvert$$\lt$ 1.0, probing gluons that carry a fraction of the nucleon momentum ($x$) around $10^{-4}$. The observed cross section exhibits little dependence on rapidity and is significantly suppressed, by a factor of ${\sim}$5, compared to a baseline model that treats a nucleus as a collection of free nucleons. Theoretical models that incorporate either nuclear shadowing or gluon saturation predict suppression of the $\phi$(1020) meson cross section with only a small dependence on rapidity, but the magnitude of the predicted suppression varies greatly. Models considering only nuclear shadowing effects result in the best agreement with the experimental data. This study establishes a powerful new tool for exploring nuclear effects and nuclear gluonic structure in the small-$x$ regime at a unique energy scale bridging the perturbative and nonperturbative quantum chromodynamics domains.

0 data tables match query

Small-$x$ evolution of gluon fields from incoherent J/$\psi$ photoproduction in ultraperipheral PbPb collisions

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
Phys.Rev.Lett. 135 (2025) 112301, 2025.
Inspire Record 2899343 DOI 10.17182/hepdata.156185

Incoherent J/$ψ$ photoproduction in heavy ion ultraperipheral collisions (UPCs) provides a sensitive probe of localized, fluctuating gluonic structures within heavy nuclei. This study reports the first measurement of the photon-nucleon center-of-mass energy ($W_{γ\mathrm{N}}$) dependence of this process in PbPb UPCs at a nucleon-nucleon center-of-mass energy of 5.02 TeV, using 1.52 nb$^{-1}$ of data recorded by the CMS experiment. The measurement covers a wide $W_{γ\mathrm{N}}$ range of $\approx$ 40-400 GeV, probing gluons carrying a fraction $x$ of nucleon momentum down to an unexplored region of 6.5 $\times$ 10$^{-5}$. Compared to baseline predictions neglecting nuclear effects, the measured cross sections exhibit significantly greater suppression at lower $x$. Additionally, the ratio of incoherent to coherent photoproduction is found to be constant across the probed $W_{γ\mathrm{N}}$ and $x$ range, disfavoring the establishment of the black disk limit. This study provides critical insights into the $x$-dependent evolution of fluctuating gluonic structures within nuclei and calls for further advancements in theoretical models incorporating nuclear shadowing and gluon saturation.

0 data tables match query

Nuclear modification of $\Upsilon$ states in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Ambrogi, Federico ; et al.
Phys.Lett.B 835 (2022) 137397, 2022.
Inspire Record 2037640 DOI 10.17182/hepdata.88291

Production cross sections of $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) states decaying into $\mu^+\mu^-$ in proton-lead (pPb) collisions are reported using data collected by the CMS experiment at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. A comparison is made with corresponding cross sections obtained with pp data measured at the same collision energy and scaled by the Pb nucleus mass number. The nuclear modification factor for $\Upsilon$(1S) is found to be $R_\mathrm{pPb}(\Upsilon(1S))$ = 0.806 $\pm$ 0.024 (stat) $\pm$ 0.059 (syst). Similar results for the excited states indicate a sequential suppression pattern, such that $R_\mathrm{pPb}(\Upsilon(1S))$$\gt$$R_\mathrm{pPb}(\Upsilon(2S))$$\gt$$R_\mathrm{pPb}(\Upsilon(3S))$. The suppression is much less pronounced in pPb than in PbPb collisions, and independent of transverse momentum $p_\mathrm{T}^\Upsilon$ and center-of-mass rapidity $y_\mathrm{CM}^\Upsilon$ of the individual $\Upsilon$ state in the studied range $p_\mathrm{T}^\Upsilon$$\lt$ 30 GeV$/c$ and $\vert y_\mathrm{CM}^\Upsilon\vert$$\lt$ 1.93. Models that incorporate sequential suppression of bottomonia in pPb collisions are in better agreement with the data than those which only assume initial-state modifications.

0 data tables match query

Measurement of the top-quark pole mass in dileptonic $t\bar{t}+ 1\text{-jet}$ events at $\sqrt{s}=13$ TeV with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 12 (2025) 023, 2025.
Inspire Record 2942410 DOI 10.17182/hepdata.159628

A measurement of the top-quark pole mass $m_{t}^\text{pole}$ is presented in $t\bar{t}$ events with an additional jet, $t\bar{t}+1\text{-jet}$, produced in $pp$ collisions at $\sqrt{s}=13$ TeV. The data sample, recorded with the ATLAS experiment during Run 2 of the LHC, corresponds to an integrated luminosity of $140~\text{fb}^{-1}$. Events with one electron and one muon of opposite electric charge in the final state are selected to measure the $t\bar{t}+1\text{-jet}$ differential cross-section as a function of the inverse of the invariant mass of the $t\bar{t}+1\text{-jet}$ system. Iterative Bayesian Unfolding is used to correct the data to enable comparison with fixed-order calculations at next-to-leading-order accuracy in the strong coupling. The process $pp \to t\bar{t}j$ ($2 \rightarrow 3$), where top quarks are taken as stable particles, and the process $pp \to b\bar{b}l^+νl^- \barν j$ ($2 \to 7$), which includes top-quark decays to the dilepton final state and off-shell effects, are considered. The top-quark mass is extracted using a $χ^2$ fit of the unfolded normalized differential cross-section distribution. The results obtained with the $2 \to 3$ and $2 \to 7$ calculations are compatible within theoretical uncertainties, providing an important consistency check. The more precise determination is obtained for the $2 \to 3 $ measurement: $m_{t}^\text{pole}=170.7\pm0.3~(\text{stat.})\pm1.4~(\text{syst.})~\pm 0.3~(\text{scale})~\pm 0.2~(\text{PDF}\oplusα_\text{S})~\text{GeV},$ which is in good agreement with other top-quark mass results.

0 data tables match query

High Precision Measurements of the Form Factors of Pion, Kaon, and Proton at Large Timelike Momentum Transfers

Seth, Kamal K. ; Dobbs, S. ; Metreveli, Z. ; et al.
Phys.Rev.Lett. 110 (2013) 022002, 2013.
Inspire Record 1189656 DOI 10.17182/hepdata.130771

High precision measurements of the form factors of proton, pion, and kaon for timelike momentum transfers of |Q^2|=s=14.2 and 17.4 GeV^2 have been made. Data taken with the CLEO-c detector at sqrt(s)=3.772 GeV and 4.170 GeV, with integrated luminosities of 805 pb^-1 and 586 pb^-1, respectively, have been used to study $e^+e^-$ annihilations into pi+pi-, K+K^-, and ppbar. The perturbative QCD prediction that at large Q^2 the quantity Q^2F(Q^2) for vector mesons is nearly constant, and varies only weakly as the strong coupling constant alpha_S(Q^2) is confirmed for both pions and kaons. In contrast, a significant difference is observed between the values of the corresponding pQCD suggested near-constant quantity, |Q^4|G_M(|Q^2|)/mu_p for protons at |Q^2|=14.2 GeV^2 and 17.4 GeV^2. The results suggest the constancy of |Q^2|G_M(|Q^2|)/mu_p, instead.

0 data tables match query

Precision Measurement of the Hadronic Contribution to the Muon Anomalous Magnetic Moment

Xiao, T. ; Dobbs, S. ; Tomaradze, A. ; et al.
Phys.Rev.D 97 (2018) 032012, 2018.
Inspire Record 1643020 DOI 10.17182/hepdata.130772

We report on a precision measurement of the cross section for the reaction $e^+e^-\to\pi^+\pi^-$ in the mass range $0.30<M_{\pi\pi}<1.00$ GeV with the initial state radiation (ISR) method, using 817 pb$^{-1}$ of data at $e^+e^-$ center-of-mass energies near 3.77 GeV and 586 pb$^{-1}$ of data at $e^+e^-$ center-of-mass energies near 4.17 GeV, collected with the CLEO-c detector at the CESR $e^+e^-$ collider at Cornell University. The integrated cross sections in the range $0.30<M_{\pi\pi}<1.00$ GeV for the process $e^+e^-\to\pi^+\pi^-$ are determined with a statistical uncertainty of $0.7\%$ and a systematic uncertainty of $1.5\%$. The leading-order hadronic contribution to the muon anomalous magnetic moment calculated using these measured $e^+e^-\to\pi^+\pi^-$ cross sections in the range $M_{\pi\pi}=0.30$ to 1.00 GeV is calculated to be $(500.4\pm3.6 (\mathrm{stat})\pm 7.5(\mathrm{syst}))\times10^{-10}$.

0 data tables match query

Measurement of the production of charm jets tagged with ${\rm D^0}$ mesons in pp collisions at $\sqrt{s}$ = 5.02 and 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 06 (2023) 133, 2023.
Inspire Record 2070667 DOI 10.17182/hepdata.134031

The measurement of the production of charm jets, identified by the presence of a ${\rm D^0}$ meson in the jet constituents, is presented in proton-proton collisions at centre-of-mass energies of $\sqrt{s}$ = 5.02 and 13 TeV with the ALICE detector at the CERN LHC. The ${\rm D^0}$ mesons were reconstructed from their hadronic decay ${\rm D^0} \rightarrow {\rm K^-}\pi^+$ and the respective charge conjugate. Jets were reconstructed from ${\rm D^0}$-meson candidates and charged particles using the anti-$k_{\rm T}$ algorithm, in the jet transverse momentum range $5<p_{\rm T;chjet}<50$ GeV/$c$, pseudorapidity $|\eta_{\rm jet}| <0.9-R$, and with the jet resolution parameters $R$ = 0.2, 0.4, 0.6. The distribution of the jet momentum fraction carried by a ${\rm D^0}$ meson along the jet axis ($z^{\rm ch}_{||}$) was measured in the range $0.4 < z^{\rm ch}_{||} < 1.0$ in four ranges of the jet transverse momentum. Comparisons of results for different collision energies and jet resolution parameters are also presented. The measurements are compared to predictions from Monte Carlo event generators based on leading-order and next-to-leading-order perturbative quantum chromodynamics calculations. A generally good description of the main features of the data is obtained in spite of a few discrepancies at low $p_{\rm T;chjet}$. Measurements were also done for $R = 0.3$ at $\sqrt{s}$ = 5.02 TeV and are shown along with their comparisons to theoretical predictions in an appendix to this paper.

0 data tables match query

Measurement of the $e^+e^- \to\pi^+\pi^- $ process cross section with the SND detector at the VEPP-2000 collider in the energy region $0.525<\sqrt{s}<0.883$ GeV

The SND collaboration Achasov, M.N. ; Baykov, A.A. ; Barnyakov, A.Yu. ; et al.
JHEP 01 (2021) 113, 2021.
Inspire Record 1789269 DOI 10.17182/hepdata.114983

The cross section of the process $e^+ e^-\to\pi^+\pi^-$ has been measured in the Spherical Neutral Detector (SND) experiment at the VEPP-2000 $e^+e^-$ collider VEPP-2000 in the energy region $525 <\sqrt[]{s} <883$ MeV. The measurement is based on data with an integrated luminosity of about 4.6 pb$^{-1}$. The systematic uncertainty of the cross section determination is 0.8 % at $\sqrt{s}>0.600$ GeV. The $\rho$ meson parameters are obtained as $m_\rho = 775.3\pm 0.5\pm 0.6$ MeV, $\Gamma_\rho = 145.6\pm 0.6\pm 0.8$ MeV, $B_{\rho\to e^+ e^-}\times B_{\rho\to\pi^+\pi^-} = (4.89\pm 0.02\pm 0.04)\times 10^{-5}$, and the parameters of the $e^+ e^-\to\omega\to\pi^+\pi^-$ process, suppressed by $G$-parity, as $B_{\omega\to e^+ e^-}\times B_{\omega\to\pi^+\pi^-}= (1.32\pm 0.06\pm 0.02)\times 10^{-6} $ and $\phi_{\rho\omega} = 110.7\pm 1.5\pm1.0$ degrees.

0 data tables match query

Version 2
Electromagnetic Pion Form-Factor in the Timelike Region

Barkov, L.M. ; Chilingarov, A.G. ; Eidelman, S.I. ; et al.
Nucl.Phys.B 256 (1985) 365-384, 1985.
Inspire Record 221309 DOI 10.17182/hepdata.6886

The pion electromagnetic form factor has been measured at the VEPP-2M collider in the c.m. energy range 360 MeV–1400 MeV with the detectors OLYA and CMD. On the basis of all available data for the pion form factor collected in the timelike region, the following values for ρ-meson parameters were obtained: m ρ = 775.9 ± 1.1 MeV, σ ρ = 150.5 ± 3.0 MeV. The ω-meson branching ratio into π + π − pair, electromagnetic radius of the pion, ππ scattering length in the P-wave and the strong interaction contribution to the muon ( g − 2) value were found to be B ωππ = (2.3 ± 0.4)%, 〈 r π 2 〉 = 0.422 ± 0.013 fm 2 , a 1 1 = 0.033 ± 0.033m π −3 , a H = (68.4 ± 1.1) × 10 −9 .

0 data tables match query